Suppr超能文献

利用脑血容量加权成像探测静息态脑活动。

Detecting resting-state brain activity using OEF-weighted imaging.

机构信息

Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, 100871, China; Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.

Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China.

出版信息

Neuroimage. 2019 Oct 15;200:101-120. doi: 10.1016/j.neuroimage.2019.06.038. Epub 2019 Jun 19.

Abstract

Traditional resting-state functional magnetic resonance imaging (fMRI) is mainly based on the blood oxygenation level-dependent (BOLD) contrast. The oxygen extraction fraction (OEF) represents an important parameter of brain metabolism and is a key biomarker of tissue viability, detecting the ratio of oxygen utilization to oxygen delivery. Investigating spontaneous fluctuations in the OEF-weighted signal is crucial for understanding the underlying mechanism of brain activity because of the immense energy budget during the resting state. However, due to the poor temporal resolution of OEF mapping, no studies have reported using OEF contrast to assess resting-state brain activity. In this fMRI study, we recorded brain OEF-weighted fluctuations for 10 min in healthy volunteers across two scanning visits, using our recently developed pulse sequence that can acquire whole-brain voxel-wise OEF-weighted signals with a temporal resolution of 3 s. Using both group-independent component analysis and seed-based functional connectivity analysis, we robustly identified intrinsic brain networks, including the medial visual, lateral visual, auditory, default mode and bilateral executive control networks, using OEF contrast. Furthermore, we investigated the resting-state local characteristics of brain activity based on OEF-weighted signals using regional homogeneity (ReHo) and fractional amplitude of low-frequency fluctuations (fALFF). We demonstrated that the gray matter regions of the brain, especially those in the default mode network, showed higher ReHo and fALFF values with the OEF contrast. Moreover, voxel-wise test-retest reliability comparisons across the whole brain demonstrated that the reliability of resting-state brain activity based on the OEF contrast was moderate for the network indices and high for the local activity indices, especially for ReHo. Although the reliabilities of the OEF-based indices were generally lower than those based on BOLD, the reliability of OEF-ReHo was slightly higher than that of BOLD-ReHo, with a small effect size, which indicated that OEF-ReHo could be used as a reliable index for characterizing resting-state local brain activity as a complement to BOLD. In conclusion, OEF can be used as an effective contrast to study resting-state brain activity with a medium to high test-retest reliability.

摘要

传统的静息态功能磁共振成像(fMRI)主要基于血氧水平依赖(BOLD)对比。氧提取分数(OEF)代表脑代谢的一个重要参数,是组织活力的关键生物标志物,可检测氧利用与氧输送的比值。研究 OEF 加权信号的自发波动对于理解脑活动的潜在机制至关重要,因为在静息状态下大脑的能量预算非常大。然而,由于 OEF 映射的时间分辨率较差,尚无研究报告使用 OEF 对比来评估静息态脑活动。在这项 fMRI 研究中,我们使用我们最近开发的脉冲序列在两次扫描中记录了健康志愿者 10 分钟的脑 OEF 加权波动,该脉冲序列可以以 3 秒的时间分辨率获取全脑体素水平的 OEF 加权信号。通过组独立成分分析和种子功能连接分析,我们使用 OEF 对比可靠地识别了内在脑网络,包括内侧视觉、外侧视觉、听觉、默认模式和双侧执行控制网络。此外,我们使用局部一致性(ReHo)和低频波动幅度分数(fALFF)基于 OEF 加权信号研究了脑活动的静息态局部特征。我们证明,大脑的灰质区域,特别是默认模式网络中的灰质区域,具有更高的 OEF 对比的 ReHo 和 fALFF 值。此外,全脑的体素间测试-重测可靠性比较表明,基于 OEF 对比的静息态脑活动的可靠性对于网络指标为中等,对于局部活动指标为高,尤其是对于 ReHo。虽然基于 OEF 的指标的可靠性通常低于基于 BOLD 的指标,但 OEF-ReHo 的可靠性略高于 BOLD-ReHo,具有较小的效应量,这表明 OEF-ReHo 可以作为一种可靠的指标,用于补充 BOLD 来描述静息态局部脑活动。总之,OEF 可作为一种有效的对比,用于研究具有中高测试-重测可靠性的静息态脑活动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验