Rasti Soroush, Meyer Jörg
Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
J Chem Phys. 2019 Jun 21;150(23):234504. doi: 10.1063/1.5097021.
Density functional theory (DFT) including van der Waals (vdW) interactions and accounting for zero-point energy (ZPE) is believed to provide a good description of crystalline ice phases [B. Pamuk et al., Phys. Rev. Lett. 108, 193003 (2012)]. Given the computational cost of DFT, it is not surprising that extensive phonon calculations, which yield the ZPE, have only been done for a limited amount of ice structures. Computationally convenient force fields on the other hand are the method of choice for large systems and/or dynamical simulations, e.g., of supercooled water. Here, we present a systematic comparison for seven hydrogen-ordered crystalline ice phases (Ih, IX, II, XIII, XIV, XV, and VIII) between many commonly used nonpolarizable force fields and density functionals, including some recently developed meta-GGA functionals and accounting for vdW interactions. Starting from the experimentally determined crystal structures, we perform space-group-constrained structural relaxations. These provide the starting point for highly accurate phonon calculations that yield effectively volume-dependent ZPEs within the quasiharmonic approximation. In particular, when including ZPE, the force fields show a remarkably good performance for equilibrium volumes and cohesive energies superior to many density functionals. A decomposition of the cohesive energies into intramolecular deformation, electrostatic, and vdW contributions quantifies the differences between force fields and DFT. Results for the equilibrium volumes and phase transition pressures for all studied force fields are much more strongly affected by ZPE than all studied density functionals. We track this down to significantly smaller shifts of the O-H-stretch modes and compare with experimental data from Raman spectroscopy.
包括范德华(vdW)相互作用并考虑零点能(ZPE)的密度泛函理论(DFT)被认为能够很好地描述结晶冰相[B. 帕穆克等人,《物理评论快报》108, 193003 (2012)]。鉴于DFT的计算成本,大量产生ZPE的声子计算仅针对有限数量的冰结构进行也就不足为奇了。另一方面,计算方便的力场是处理大系统和/或动态模拟(例如过冷水的模拟)的首选方法。在此,我们对七种氢有序结晶冰相(Ih、IX、II、XIII、XIV、XV和VIII)在许多常用的非极化力场和密度泛函之间进行了系统比较,包括一些最近开发的meta - GGA泛函并考虑了vdW相互作用。从实验确定的晶体结构出发,我们进行了空间群约束的结构弛豫。这些为高精度的声子计算提供了起点,该计算在准谐近似内产生有效依赖于体积的ZPE。特别是,当包括ZPE时,力场在平衡体积和内聚能方面表现出非常好的性能,优于许多密度泛函。将内聚能分解为分子内变形、静电和vdW贡献,量化了力场和DFT之间的差异。所有研究的力场的平衡体积和相变压力结果受ZPE的影响比所有研究的密度泛函要强得多。我们将此归因于O - H伸缩模式的显著更小的位移,并与拉曼光谱的实验数据进行了比较。