Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
J Phys Chem A. 2013 Aug 15;117(32):7356-66. doi: 10.1021/jp401225b. Epub 2013 Apr 29.
The fundamental importance of water for many chemical processes has motivated the development of countless efficient but approximate water potentials for large-scale molecular dynamics simulations, from simple empirical force fields to very sophisticated flexible water models. Accurate and generally applicable water potentials should fulfill a number of requirements. They should have a quality close to quantum chemical methods, they should explicitly depend on all degrees of freedom including all relevant many-body interactions, and they should be able to describe molecular dissociation and recombination. In this work, we present a high-dimensional neural network (NN) potential for water clusters based on density-functional theory (DFT) calculations, which is constructed using clusters containing up to 10 monomers and is in principle able to meet all these requirements. We investigate the reliability of specific parametrizations employing two frequently used generalized gradient approximation (GGA) exchange-correlation functionals, PBE and RPBE, as reference methods. We find that the binding energy errors of the NN potentials with respect to DFT are significantly lower than the typical uncertainties of DFT calculations arising from the choice of the exchange-correlation functional. Further, we examine the role of van der Waals interactions, which are not properly described by GGA functionals. Specifically, we incorporate the D3 scheme suggested by Grimme (J. Chem. Phys. 2010, 132, 154104) in our potentials and demonstrate that it can be applied to GGA-based NN potentials in the same way as to DFT calculations without modification. Our results show that the description of small water clusters provided by the RPBE functional is significantly improved if van der Waals interactions are included, while in case of the PBE functional, which is well-known to yield stronger binding than RPBE, van der Waals corrections lead to overestimated binding energies.
水对于许多化学过程至关重要,这促使人们开发了无数高效但近似的水势模型,用于大规模分子动力学模拟,从简单的经验力场到非常复杂的柔性水模型。准确且普遍适用的水势应满足以下一些要求。它们应该具有接近量子化学方法的质量,应该明确依赖于所有自由度,包括所有相关的多体相互作用,并且应该能够描述分子的离解和重组。在这项工作中,我们提出了一种基于密度泛函理论(DFT)计算的水团簇高维神经网络(NN)势,该势是使用包含多达 10 个单体的团簇构建的,原则上能够满足所有这些要求。我们使用两种常用的广义梯度近似(GGA)交换相关泛函(PBE 和 RPBE)作为参考方法,研究了特定参数化的可靠性。我们发现,与 DFT 相比,NN 势的结合能误差明显低于 DFT 计算中由于交换相关泛函选择而产生的典型不确定性。此外,我们还研究了范德华相互作用的作用,GGA 泛函不能很好地描述范德华相互作用。具体来说,我们在势中纳入了 Grimme 提出的 D3 方案(J. Chem. Phys. 2010, 132, 154104),并证明它可以像 DFT 计算一样应用于基于 GGA 的 NN 势,而无需修改。我们的结果表明,如果包括范德华相互作用,RPBE 泛函提供的小水团簇的描述会显著改善,而对于 PBE 泛函,它已知比 RPBE 产生更强的结合,范德华修正会导致高估的结合能。