Suppr超能文献

基于群体药代动力学/药效学分析的危重症患者美罗培南给药算法的开发。

Development of a dosing algorithm for meropenem in critically ill patients based on a population pharmacokinetic/pharmacodynamic analysis.

机构信息

Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169 Berlin, Germany; Graduate Research Training Program PharMetrX.

Department of Anaesthesiology, Hospital of the Ludwig-Maximilians-Universität München, Munich, Germany.

出版信息

Int J Antimicrob Agents. 2019 Sep;54(3):309-317. doi: 10.1016/j.ijantimicag.2019.06.016. Epub 2019 Jun 20.

Abstract

Effective antibiotic dosing is vital for therapeutic success in critically ill patients. This work aimed to develop an algorithm to identify appropriate meropenem dosing in critically ill patients. Population pharmacokinetic (PK) modelling was performed in NONMEM®7.3 based on densely sampled meropenem serum samples (n = 48; n = 1376) and included a systematic analysis of 27 pre-selected covariates to identify factors influencing meropenem exposure. Using Monte Carlo simulations newly considering the uncertainty of PK parameter estimates, standard meropenem dosing was evaluated with respect to attainment of the pharmacokinetic/pharmacodynamic (PK/PD) target and was compared with alternative infusion regimens (short-term, prolonged, continuous; daily dose, 2000-6000 mg). Subsequently, a dosing algorithm was developed to identify appropriate dosing regimens. The two-compartment population PK model included three factors influencing meropenem pharmacokinetics: the Cockcroft-Gault creatinine clearance (CLCR) on meropenem clearance; and body weight and albumin on the central and peripheral volume of distribution, respectively; of these, only CLCR was identified as a vital influencing factor on PK/PD target attainment. A three-level dosing algorithm was developed (considering PK parameter uncertainty), suggesting dosing regimens depending on renal function and the level (L) of knowledge about the infecting pathogen (L1, pathogen unknown; L2, pathogen known; L3, pathogen and susceptibility known; L3, MIC known). Whereas patients with higher CLCR and lower pathogen susceptibility required mainly intensified dosing regimens, lower than standard doses appeared sufficient for highly susceptible pathogens. In conclusion, a versatile meropenem dosing algorithm for critically ill patients is proposed, indicating appropriate dosing regimens based on patient- and pathogen-specific information.

摘要

有效抗生素剂量对于重症患者的治疗成功至关重要。本研究旨在开发一种算法,以确定重症患者中合适的美罗培南剂量。基于密集采样的美罗培南血清样本(n=48;n=1376),采用 NONMEM®7.3 进行群体药代动力学(PK)建模,并对 27 个预先选择的协变量进行系统分析,以确定影响美罗培南暴露的因素。使用新考虑 PK 参数估计不确定性的蒙特卡罗模拟,评估标准美罗培南剂量是否达到药代动力学/药效学(PK/PD)目标,并与替代输注方案(短期、延长、连续;每日剂量 2000-6000mg)进行比较。随后,开发了一种剂量算法来确定合适的剂量方案。两室人群 PK 模型包括三个影响美罗培南药代动力学的因素:美罗培南清除率的 Cockcroft-Gault 肌酐清除率(CLCR);以及体重和白蛋白分别对中央和外周分布容积的影响;其中,只有 CLCR 被确定为对 PK/PD 目标实现的重要影响因素。开发了一个三级剂量算法(考虑 PK 参数不确定性),根据肾功能和对感染病原体的了解程度(L1,病原体未知;L2,病原体已知;L3,病原体和敏感性已知;L3,MIC 已知)建议剂量方案。对于 CLCR 较高和病原体敏感性较低的患者,主要需要强化剂量方案,而对于高度敏感的病原体,低于标准剂量似乎就足够了。总之,提出了一种用于重症患者的多功能美罗培南剂量算法,根据患者和病原体的具体信息,指出了合适的剂量方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验