Suppr超能文献

基于生物素模板的植入式生物材料,用于增强组织整合和血管生成。

Bijel-templated implantable biomaterials for enhancing tissue integration and vascularization.

机构信息

Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA.

Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA.

出版信息

Acta Biomater. 2019 Aug;94:173-182. doi: 10.1016/j.actbio.2019.06.031. Epub 2019 Jun 22.

Abstract

Mitigation of the foreign body response (FBR) and successful tissue integration are essential to ensuring the longevity of implanted devices and biomaterials. The use of porous materials and coatings has been shown to have an impact, as the textured surfaces can mediate macrophage interactions with the implant and influence the FBR, and the pores can provide space for vascularization and tissue integration. In this study, we use a new class of implantable porous biomaterials templated from bicontinuous interfacially jammed emulsion gels (bijels), which offer a fully percolating, non-constricting porous network with a uniform pore diameter on the order of tens of micrometers, and surfaces with consistent curvature. We demonstrate that these unique morphological features, inherent to bijel-templated materials (BTMs), can enhance tissue integration and vascularization, and reduce the FBR. Cylindrical polyethylene glycol diacrylate (PEGDA) BTMs, along with PEGDA particle-templated materials (PTMs), and non-templated materials (NTMs), were implanted into the subcutaneous space of athymic nude mice. After 28 days, implants were retrieved and analyzed via histological techniques. Within BTMs, blood vessels of increased size and depth, changes in collagen deposition, and increased presence of pro-healing macrophages were observed compared to that of PTM and NTM implants. Bijel templating offers a new route to biomaterials that can improve the function and longevity of implantable devices. STATEMENT OF SIGNIFICANCE: All implanted biomaterials are subject to the foreign body response (FBR) which can have a detrimental effect on their efficacy. Altering the surface chemistry can decrease the FBR by limiting the amount of proteins adsorbed to the implant. This effect can be enhanced by including pores in the biomaterial to allow new tissue growth as the implant becomes integrated in the body. Here, we introduce a new class of self-assembled biomaterials comprising a fully penetrating, non-constricting pore phase with hyperbolic (saddle) surfaces for enhanced tissue integration. These unique morphological characteristics result in dense blood vessel formation and favorable tissue response properties demonstrated in a four-week implantation study.

摘要

减轻异物反应(FBR)并实现组织整合对于确保植入设备和生物材料的长期有效性至关重要。事实表明,多孔材料和涂层的使用会产生影响,因为具有纹理表面的植入物可以调节巨噬细胞与植入物的相互作用并影响 FBR,而孔可以为血管生成和组织整合提供空间。在这项研究中,我们使用了一类新的可植入多孔生物材料,其模板源自双连续界面相凝胶(bijel),这种材料提供了一种完全连通、无限制的多孔网络,孔径均匀,约为数十微米,且表面具有一致的曲率。我们证明,这些独特的形态特征是 bijel 模板材料(BTM)所固有的,可增强组织整合和血管生成,并减少 FBR。我们将圆柱形聚乙二醇二丙烯酸酯(PEGDA)BTM 与 PEGDA 颗粒模板材料(PTM)和非模板材料(NTM)一起植入无胸腺裸鼠的皮下空间。28 天后,取出植入物并通过组织学技术进行分析。在 BTM 中,与 PTM 和 NTM 植入物相比,观察到血管增大和变深、胶原蛋白沉积变化以及更多的促愈合巨噬细胞的存在。bijel 模板为生物材料提供了一条新途径,可以改善植入设备的功能和寿命。

意义声明

所有植入的生物材料都会受到异物反应(FBR)的影响,这可能会对其功效产生不利影响。通过限制吸附到植入物上的蛋白质量,可以改变表面化学性质来减少 FBR。通过在生物材料中包含孔来允许新的组织生长,从而使植入物在体内整合,从而可以增强这种效果。在这里,我们介绍了一类新的自组装生物材料,它由具有双曲(鞍形)表面的完全穿透、无限制的孔相组成,用于增强组织整合。在为期四周的植入研究中,这些独特的形态特征导致了密集的血管形成和有利的组织反应特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验