Wan Teng, Li Qi-Cheng, Zhang Feng-Shi, Zhang Xiao-Meng, Han Na, Zhang Pei-Xun
Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China.
Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, 100044, China.
Mater Today Bio. 2024 Dec 12;30:101403. doi: 10.1016/j.mtbio.2024.101403. eCollection 2025 Feb.
Recent advancements in tissue engineering have promoted the development of nerve guidance conduits (NGCs) that significantly enhance peripheral nerve injury treatment, improving outcomes and recovery rates. However, utilising tailored biomimetic three-dimensional (3D) topological porous structures combined with multiple bio-effect neurotrophic factors to create environments similar to neural tissues, regulate local immune responses, and develop a supportive microenvironment to promote peripheral nerve regeneration and repair poses significant challenges. Herein, a biomimetic extracellular matrix (ECM) NGC featuring an interconnected 3D porous network and sustained delivery of insulin-like growth factor-1 (IGF-1) is designed using multi-functional gelatine microcapsules (GMs). Nerve conduits made by blending chitosan (CS) with GMs demonstrate suitable degradation rates, reduced swelling rates, increased suture tensile strength, improved elongation at break, and 50 % radial compression performance that meet clinical application requirements. In vitro cytological studies indicate that biomimetic ECM NGCs exhibit good biocompatibility, promote early survival, proliferation, and remyelination potential of Schwann cells (SCs), and support neurite outgrowth. The biomimetic ECM NGCs comprising a 3D interconnected porous network in a 10-mm sciatic nerve defect rat model sustain IGF-1 delivery, promoting early infiltration of macrophages and polarisation towards M2-type macrophages. Furthermore, observations at 12 weeks post-implantation revealed improvements in electrophysiological performance, alleviation of gastrocnemius muscle atrophy, increased peripheral nerve regeneration, and motor function restoration. Thus, biomimetic ECM NGCs offer a therapeutic strategy for peripheral nerve regeneration with promising clinical applications and transformation prospects to regulate immune microenvironments, promoting SC proliferation and differentiation with nerve axon growth.
组织工程学的最新进展推动了神经引导导管(NGC)的发展,其显著改善了周围神经损伤的治疗效果,提高了治愈率和恢复率。然而,利用定制的仿生三维(3D)拓扑多孔结构与多种生物效应神经营养因子相结合,以创建类似于神经组织的环境、调节局部免疫反应并开发促进周围神经再生和修复的支持性微环境,面临着重大挑战。在此,使用多功能明胶微胶囊(GM)设计了一种具有相互连接的3D多孔网络和胰岛素样生长因子-1(IGF-1)持续释放功能的仿生细胞外基质(ECM)NGC。通过将壳聚糖(CS)与GM混合制成的神经导管显示出合适的降解速率、降低的膨胀率、增加的缝合拉伸强度、改善的断裂伸长率以及50%的径向压缩性能,满足临床应用要求。体外细胞学研究表明,仿生ECM NGC具有良好的生物相容性,可促进雪旺细胞(SC)的早期存活、增殖和髓鞘再生潜力,并支持神经突生长。在10毫米坐骨神经缺损大鼠模型中,包含3D相互连接多孔网络的仿生ECM NGC能够持续释放IGF-1,促进巨噬细胞的早期浸润并向M2型巨噬细胞极化。此外,植入后12周的观察结果显示,电生理性能有所改善,腓肠肌萎缩减轻,周围神经再生增加,运动功能恢复。因此,仿生ECM NGC为周围神经再生提供了一种治疗策略,具有广阔的临床应用和转化前景,可调节免疫微环境,促进SC增殖和分化以及神经轴突生长。