Suppr超能文献

阻塞临界性对结构玻璃中低温异常的影响。

Impact of jamming criticality on low-temperature anomalies in structural glasses.

作者信息

Franz Silvio, Maimbourg Thibaud, Parisi Giorgio, Scardicchio Antonello

机构信息

Laboratoire de Physique Théorique et Modèles Statistiques, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France.

Condensed Matter and Statistical Physics Section, The Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy;

出版信息

Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):13768-13773. doi: 10.1073/pnas.1820360116. Epub 2019 Jun 24.

Abstract

We present a mechanism for the anomalous behavior of the specific heat in low-temperature amorphous solids. The analytic solution of a mean-field model belonging to the same universality class as high-dimensional glasses, the spherical perceptron, suggests that there exists a cross-over temperature above which the specific heat scales linearly with temperature, while below it, a cubic scaling is displayed. This relies on two crucial features of the phase diagram: () the marginal stability of the free-energy landscape, which induces a gapless phase responsible for the emergence of a power-law scaling; and () the vicinity of the classical jamming critical point, as the cross-over temperature gets lowered when approaching it. This scenario arises from a direct study of the thermodynamics of the system in the quantum regime, where we show that, contrary to crystals, the Debye approximation does not hold.

摘要

我们提出了一种关于低温非晶态固体中比热异常行为的机制。一个与高维玻璃属于同一普适类的平均场模型——球形感知器的解析解表明,存在一个交叉温度,高于此温度时比热随温度线性变化,而低于此温度时则呈现立方标度。这依赖于相图的两个关键特征:()自由能景观的边缘稳定性,它导致了一个无隙相,该相是幂律标度出现的原因;以及()经典堵塞临界点的临近,因为当接近它时交叉温度会降低。这种情况源于对量子 regime 中系统热力学的直接研究,我们在其中表明,与晶体不同,德拜近似不成立。

相似文献

1
Impact of jamming criticality on low-temperature anomalies in structural glasses.阻塞临界性对结构玻璃中低温异常的影响。
Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):13768-13773. doi: 10.1073/pnas.1820360116. Epub 2019 Jun 24.
2
Aging, Jamming, and the Limits of Stability of Amorphous Solids.老化、阻塞与非晶态固体稳定性的极限
J Phys Chem B. 2018 Apr 5;122(13):3280-3295. doi: 10.1021/acs.jpcb.7b09553. Epub 2018 Jan 9.
3
Universality of jamming of nonspherical particles.非球形颗粒的阻塞的普适性。
Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):11736-11741. doi: 10.1073/pnas.1812457115. Epub 2018 Oct 31.
5
New jamming scenario: from marginal jamming to deep jamming.新的干扰场景:从边缘干扰到深度干扰。
Phys Rev Lett. 2011 Mar 25;106(12):125503. doi: 10.1103/PhysRevLett.106.125503. Epub 2011 Mar 23.
7
Elastic avalanches reveal marginal behavior in amorphous solids.弹性雪崩揭示非晶态固体的边缘行为。
Proc Natl Acad Sci U S A. 2020 Jan 7;117(1):86-92. doi: 10.1073/pnas.1915070117. Epub 2019 Dec 16.
8
Criticality in a Vlasov-Poisson system: a fermioniclike universality class.弗拉索夫 - 泊松系统中的临界性:一个类费米子普适类。
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 May;71(5 Pt 2):056406. doi: 10.1103/PhysRevE.71.056406. Epub 2005 May 26.
9
Universal spectrum of normal modes in low-temperature glasses.低温玻璃中正常模式的通用频谱。
Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):14539-44. doi: 10.1073/pnas.1511134112. Epub 2015 Nov 11.

本文引用的文献

3
Marginally stable phases in mean-field structural glasses.平均场结构玻璃中的亚稳相。
Phys Rev E. 2019 Jan;99(1-1):012107. doi: 10.1103/PhysRevE.99.012107.
4
Low-frequency vibrational modes of stable glasses.稳定玻璃的低频振动模式。
Nat Commun. 2019 Jan 3;10(1):26. doi: 10.1038/s41467-018-07978-1.
5
Universality of jamming of nonspherical particles.非球形颗粒的阻塞的普适性。
Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):11736-11741. doi: 10.1073/pnas.1812457115. Epub 2018 Oct 31.
6
The physics of jamming for granular materials: a review.颗粒物质的阻塞物理学:综述。
Rep Prog Phys. 2019 Jan;82(1):012601. doi: 10.1088/1361-6633/aadc3c. Epub 2018 Aug 22.
7
Probing the non-Debye low-frequency excitations in glasses through random pinning.通过随机钉扎探究玻璃中的非德拜低频激发。
Proc Natl Acad Sci U S A. 2018 Aug 28;115(35):8700-8704. doi: 10.1073/pnas.1805024115. Epub 2018 Aug 13.
8
Gardner Transition in Physical Dimensions.物理维度中的 Gardner 转变。
Phys Rev Lett. 2018 Jun 1;120(22):225501. doi: 10.1103/PhysRevLett.120.225501.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验