Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114;
Speech and Hearing Bioscience and Technology Program, Harvard University, Cambridge, MA 02138.
Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):13977-13982. doi: 10.1073/pnas.1900787116. Epub 2019 Jun 24.
Mammals detect sound through mechanosensitive cells of the cochlear organ of Corti that rest on the basilar membrane (BM). Motions of the BM and organ of Corti have been studied at the cochlear base in various laboratory animals, and the assumption has been that the cochleas of all mammals work similarly. In the classic view, the BM attaches to a stationary osseous spiral lamina (OSL), the tectorial membrane (TM) attaches to the limbus above the stationary OSL, and the BM is the major moving element, with a peak displacement near its center. Here, we measured the motion and studied the anatomy of the human cochlear partition (CP) at the cochlear base of fresh human cadaveric specimens. Unlike the classic view, we identified a soft-tissue structure between the BM and OSL in humans, which we name the CP "bridge." We measured CP transverse motion in humans and found that the OSL moved like a plate hinged near the modiolus, with motion increasing from the modiolus to the bridge. The bridge moved almost as much as the BM, with the maximum CP motion near the bridge-BM connection. BM motion accounts for 100% of CP volume displacement in the classic view, but accounts for only 27 to 43% in the base of humans. In humans, the TM-limbus attachment is above the moving bridge, not above a fixed structure. These results challenge long-held assumptions about cochlear mechanics in humans. In addition, animal apical anatomy (in ) doesn't always fit the classic view.
哺乳动物通过位于基底膜 (BM) 上的耳蜗科蒂器官的机械敏感细胞来探测声音。在各种实验室动物中,已经研究了 BM 和科蒂器官在耳蜗基底的运动,并且假设所有哺乳动物的耳蜗都以类似的方式工作。在经典观点中,BM 附着在固定的骨性螺旋板 (OSL) 上,盖膜 (TM) 附着在固定的 OSL 上方的嵴上,BM 是主要的运动元件,其中心附近有一个峰值位移。在这里,我们在新鲜的人类尸体标本的耳蜗基底测量了人类耳蜗隔板 (CP) 的运动并研究了其解剖结构。与经典观点不同,我们在人类中确定了 BM 和 OSL 之间的一种软组织结构,我们将其命名为 CP“桥”。我们测量了人类 CP 的横向运动,发现 OSL 像在蜗轴附近铰接的板一样移动,运动从蜗轴到桥增加。桥的运动几乎与 BM 一样大,最大的 CP 运动靠近桥-BM 连接。在经典观点中,BM 运动占 CP 体积位移的 100%,但在人类的基底仅占 27%到 43%。在人类中,TM-嵴附着在移动的桥上方,而不是固定结构上方。这些结果挑战了人类耳蜗力学的长期假设。此外,动物的顶端解剖结构(in)并不总是符合经典观点。