Suppr超能文献

人类耳蜗分隔解剖结构和运动与经典的哺乳动物观点不同。

Cochlear partition anatomy and motion in humans differ from the classic view of mammals.

机构信息

Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114;

Speech and Hearing Bioscience and Technology Program, Harvard University, Cambridge, MA 02138.

出版信息

Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):13977-13982. doi: 10.1073/pnas.1900787116. Epub 2019 Jun 24.

Abstract

Mammals detect sound through mechanosensitive cells of the cochlear organ of Corti that rest on the basilar membrane (BM). Motions of the BM and organ of Corti have been studied at the cochlear base in various laboratory animals, and the assumption has been that the cochleas of all mammals work similarly. In the classic view, the BM attaches to a stationary osseous spiral lamina (OSL), the tectorial membrane (TM) attaches to the limbus above the stationary OSL, and the BM is the major moving element, with a peak displacement near its center. Here, we measured the motion and studied the anatomy of the human cochlear partition (CP) at the cochlear base of fresh human cadaveric specimens. Unlike the classic view, we identified a soft-tissue structure between the BM and OSL in humans, which we name the CP "bridge." We measured CP transverse motion in humans and found that the OSL moved like a plate hinged near the modiolus, with motion increasing from the modiolus to the bridge. The bridge moved almost as much as the BM, with the maximum CP motion near the bridge-BM connection. BM motion accounts for 100% of CP volume displacement in the classic view, but accounts for only 27 to 43% in the base of humans. In humans, the TM-limbus attachment is above the moving bridge, not above a fixed structure. These results challenge long-held assumptions about cochlear mechanics in humans. In addition, animal apical anatomy (in ) doesn't always fit the classic view.

摘要

哺乳动物通过位于基底膜 (BM) 上的耳蜗科蒂器官的机械敏感细胞来探测声音。在各种实验室动物中,已经研究了 BM 和科蒂器官在耳蜗基底的运动,并且假设所有哺乳动物的耳蜗都以类似的方式工作。在经典观点中,BM 附着在固定的骨性螺旋板 (OSL) 上,盖膜 (TM) 附着在固定的 OSL 上方的嵴上,BM 是主要的运动元件,其中心附近有一个峰值位移。在这里,我们在新鲜的人类尸体标本的耳蜗基底测量了人类耳蜗隔板 (CP) 的运动并研究了其解剖结构。与经典观点不同,我们在人类中确定了 BM 和 OSL 之间的一种软组织结构,我们将其命名为 CP“桥”。我们测量了人类 CP 的横向运动,发现 OSL 像在蜗轴附近铰接的板一样移动,运动从蜗轴到桥增加。桥的运动几乎与 BM 一样大,最大的 CP 运动靠近桥-BM 连接。在经典观点中,BM 运动占 CP 体积位移的 100%,但在人类的基底仅占 27%到 43%。在人类中,TM-嵴附着在移动的桥上方,而不是固定结构上方。这些结果挑战了人类耳蜗力学的长期假设。此外,动物的顶端解剖结构(in)并不总是符合经典观点。

相似文献

1
Cochlear partition anatomy and motion in humans differ from the classic view of mammals.
Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):13977-13982. doi: 10.1073/pnas.1900787116. Epub 2019 Jun 24.
2
Anatomy of the Human Osseous Spiral Lamina and Cochlear Partition Bridge: Relevance for Cochlear Partition Motion.
J Assoc Res Otolaryngol. 2020 Apr;21(2):171-182. doi: 10.1007/s10162-020-00748-1. Epub 2020 Mar 12.
4
What basilar-membrane tuning says about cochlear micromechanics.
Am J Otolaryngol. 1982 Jan-Feb;3(1):48-52. doi: 10.1016/s0196-0709(82)80032-x.
6
Dual traveling waves in an inner ear model with two degrees of freedom.
Phys Rev Lett. 2011 Aug 19;107(8):088101. doi: 10.1103/PhysRevLett.107.088101. Epub 2011 Aug 16.
7
Cochlear anatomy related to cochlear micromechanics. A review.
J Acoust Soc Am. 1980 May;67(5):1686-95. doi: 10.1121/1.384295.
8
Resonant tectorial membrane motion in the inner ear: its crucial role in frequency tuning.
Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8727-32. doi: 10.1073/pnas.93.16.8727.
9
Basilar membrane and osseous spiral lamina motion in human cadavers with air and bone conduction stimuli.
Hear Res. 2003 Jul;181(1-2):131-43. doi: 10.1016/s0378-5955(03)00183-7.
10
Analysis of cochlear mechanics.
Hear Res. 1986;22:155-69. doi: 10.1016/0378-5955(86)90091-2.

引用本文的文献

1
How the Human Cochlea Moves: Biomechanical Modeling of a Wide, Layered Osseous Spiral Lamina.
J Assoc Res Otolaryngol. 2025 Jul 9. doi: 10.1007/s10162-025-01000-4.
2
Volume rendering technique and high-resolution microCT: 3D exploration of the cochlear anatomy.
Eur Arch Otorhinolaryngol. 2025 Apr 3. doi: 10.1007/s00405-025-09360-6.
4
3D Computational Modeling of Blast Transmission through the Fluid-Filled Cochlea and Hair Cells.
Ann Biomed Eng. 2025 Mar;53(3):718-730. doi: 10.1007/s10439-024-03659-x. Epub 2024 Dec 8.
5
Cochlear Apex Triangulation Utilizing Ct Measures And Middle Ear Landmarks.
Otol Neurotol Open. 2024 Aug 23;4(3):e060. doi: 10.1097/ONO.0000000000000060. eCollection 2024 Sep.
6
Computational model of the human cochlea with motion of the layered osseous spiral lamina.
bioRxiv. 2024 Aug 19:2024.08.16.608342. doi: 10.1101/2024.08.16.608342.
8
Otosclerosis under microCT: New insights into the disease and its anatomy.
Front Radiol. 2022 Aug 5;2:965474. doi: 10.3389/fradi.2022.965474. eCollection 2022.
9
Quantitative Evaluation of the 3D Anatomy of the Human Osseous Spiral Lamina Using MicroCT.
J Assoc Res Otolaryngol. 2023 Aug;24(4):441-452. doi: 10.1007/s10162-023-00904-3. Epub 2023 Jul 5.
10
Optical Coherence Tomography-Based Atlas of the Human Cochlear Hook Region.
J Clin Med. 2022 Dec 28;12(1):238. doi: 10.3390/jcm12010238.

本文引用的文献

1
Mammalian behavior and physiology converge to confirm sharper cochlear tuning in humans.
Proc Natl Acad Sci U S A. 2018 Oct 30;115(44):11322-11326. doi: 10.1073/pnas.1810766115. Epub 2018 Oct 15.
2
Organ of Corti vibration within the intact gerbil cochlea measured by volumetric optical coherence tomography and vibrometry.
J Neurophysiol. 2018 Dec 1;120(6):2847-2857. doi: 10.1152/jn.00702.2017. Epub 2018 Oct 3.
3
Vibration hotspots reveal longitudinal funneling of sound-evoked motion in the mammalian cochlea.
Nat Commun. 2018 Aug 3;9(1):3054. doi: 10.1038/s41467-018-05483-z.
5
Mechanical tuning and amplification within the apex of the guinea pig cochlea.
J Physiol. 2017 Jul 1;595(13):4549-4561. doi: 10.1113/JP273881. Epub 2017 May 21.
7
Otoacoustic emission estimates of human basilar membrane impulse response duration and cochlear filter tuning.
Hear Res. 2016 Dec;342:150-160. doi: 10.1016/j.heares.2016.10.016. Epub 2016 Oct 27.
8
Tectorial Membrane Traveling Waves Underlie Sharp Auditory Tuning in Humans.
Biophys J. 2016 Sep 6;111(5):921-4. doi: 10.1016/j.bpj.2016.07.038. Epub 2016 Aug 18.
9
Reticular lamina and basilar membrane vibrations in living mouse cochleae.
Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):9910-5. doi: 10.1073/pnas.1607428113. Epub 2016 Aug 11.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验