Suppr超能文献

通过copulas对多类型复发事件进行依存建模。

Dependence modeling for multi-type recurrent events via copulas.

作者信息

Lee Jooyoung, Cook Richard J

机构信息

Department of Statistics and Actuarial Science, University of Waterloo, ON, Canada.

出版信息

Stat Med. 2019 Sep 20;38(21):4066-4082. doi: 10.1002/sim.8283. Epub 2019 Jun 24.

Abstract

When several types of recurrent events may arise, interest often lies in marginal modeling and studying the nature of the dependence structure. In this paper, we propose a multivariate mixed-Poisson model with the dependence between events accommodated by type-specific random effects which are associated through use of a Gaussian copula. Such models retain marginal features with a simple interpretation, reflect the heterogeneity in risk for each type of event, and provide insight into the dependence between the different types of events. Semiparametric inference is proposed based on composite likelihood to avoid high dimensional integration. An application to a study of nutritional supplements in malnourished children is given in which the goal is to evaluate the reduction in the rate of several different kinds of infection.

摘要

当可能出现几种类型的复发事件时,人们通常关注边缘建模并研究依赖结构的性质。在本文中,我们提出了一种多元混合泊松模型,其中事件之间的依赖性通过特定类型的随机效应来体现,这些随机效应通过高斯 copula 相互关联。此类模型保留了具有简单解释的边缘特征,反映了每种类型事件风险的异质性,并深入了解不同类型事件之间的依赖性。基于复合似然提出了半参数推断方法,以避免高维积分。文中给出了一个对营养不良儿童营养补充剂研究的应用实例,其目的是评估几种不同类型感染率的降低情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验