Suppr超能文献

新型聚合物经导管主动脉瓣的体外血液动力学评估。

In vitro hemodynamic assessment of a novel polymeric transcatheter aortic valve.

机构信息

Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.

Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA; Department of Mechanical Engineering, The Ohio State University, Columbus, OH, USA.

出版信息

J Mech Behav Biomed Mater. 2019 Oct;98:163-171. doi: 10.1016/j.jmbbm.2019.06.016. Epub 2019 Jun 19.

Abstract

Transcatheter aortic valve replacement (TAVR) is a life-saving alternative to surgical intervention. However, the identification of features associated with poor outcomes, including residual paravalvular leakage (PVL), leaflet calcification, and subclinical leaflet thrombosis, are cause to be concerned about valve durablilty (Mylotte and Piazza, 2015a, 2015b; Dasi et al., 2017; Makkar et al., 2015; Kheradvar et al., 2015a). The aim of this study is to optimize the potential of a hyaluronan (HA) enhanced polymeric transcatheter aortic valve (HA-TAV) that has promised to reduce blood damage causing-turbulent flow while maintaining durability. HA-enhanced linear low-density polyethylene (LLDPE) leaflets were sutured to novel cobalt chromium stents, size 26 mm balloon expandable stents. Hemodynamic performance was assessed in a left heart simulator under physiological pressure and flow conditions and compared to a 26 mm Medtronic Evolut and 26 mm Edwards SAPIEN 3. High-speed imaging and particle image velocimetry (PIV) were performed. The HA-TAV demonstrated an effective orifice area (EOA) within one standard deviation of the leading valve, SAPIEN 3.The regurgitant fraction (RF) of the HA-TAV (11.23 ± 0.55%) is decreased in comparison the Evolut (15.74 ± 0.73%) and slightly higher than the SAPIEN 3 (10.92 ± 0.11%), which is considered trace regurgitation according to valve standards. A decreased number of higher principal Reynolds shear stresses were shown for the HA-TAV at each cardiac phase. The HA-TAV is directly comparable and in some cases superior to the leading commercially available prosthetic heart valves in in-vitro hemodynamic testing.

摘要

经导管主动脉瓣置换术(TAVR)是一种替代外科手术的救命方法。然而,识别与不良预后相关的特征,包括残余瓣周漏(PVL)、瓣叶钙化和亚临床瓣叶血栓形成,是对瓣膜耐久性的担忧的原因(Mylotte 和 Piazza,2015a,2015b;Dasi 等人,2017;Makkar 等人,2015;Kheradvar 等人,2015a)。本研究旨在优化透明质酸(HA)增强聚合物经导管主动脉瓣(HA-TAV)的潜力,该瓣膜有望减少引起湍流的血液损伤,同时保持耐久性。HA 增强的线性低密度聚乙烯(LLDPE)瓣叶缝合到新型钴铬支架上,尺寸为 26mm 球囊可扩张支架。在生理压力和流量条件下,在左心模拟器中评估血流动力学性能,并与 26mm Medtronic Evolut 和 26mm Edwards SAPIEN 3 进行比较。进行高速成像和粒子图像测速(PIV)。HA-TAV 的有效瓣口面积(EOA)在 SAPIEN 3 领先瓣膜的一个标准差范围内。HA-TAV 的反流分数(RF)(11.23±0.55%)与 Evolut(15.74±0.73%)相比降低,略高于 SAPIEN 3(10.92±0.11%),根据瓣膜标准,这被认为是微量反流。在每个心动周期,HA-TAV 的较高主雷诺切应力数量减少。在体外血流动力学测试中,HA-TAV 与领先的商业可用人工心脏瓣膜直接可比,在某些情况下优于后者。

相似文献

1
In vitro hemodynamic assessment of a novel polymeric transcatheter aortic valve.
J Mech Behav Biomed Mater. 2019 Oct;98:163-171. doi: 10.1016/j.jmbbm.2019.06.016. Epub 2019 Jun 19.
2
The hemodynamics of transcatheter aortic valves in transcatheter aortic valves.
J Thorac Cardiovasc Surg. 2021 Feb;161(2):565-576.e2. doi: 10.1016/j.jtcvs.2019.09.174. Epub 2019 Oct 30.
3
Sinus Hemodynamics After Transcatheter Aortic Valve in Transcatheter Aortic Valve.
Ann Thorac Surg. 2020 Oct;110(4):1348-1356. doi: 10.1016/j.athoracsur.2020.02.016. Epub 2020 Mar 14.
4
An in vitro evaluation of turbulence after transcatheter aortic valve implantation.
J Thorac Cardiovasc Surg. 2018 Nov;156(5):1837-1848. doi: 10.1016/j.jtcvs.2018.05.042. Epub 2018 Jun 2.
5
Flow dynamics of surgical and transcatheter aortic valves: Past to present.
JTCVS Open. 2022 Jan 24;9:43-56. doi: 10.1016/j.xjon.2022.01.017. eCollection 2022 Mar.
6
Flow dynamics in the sinus and downstream of third and fourth generation balloon expandable transcatheter aortic valves.
J Mech Behav Biomed Mater. 2022 Mar;127:105092. doi: 10.1016/j.jmbbm.2022.105092. Epub 2022 Jan 17.
7
Stent and Leaflet Stresses in 29-mm Second-Generation Balloon-Expandable Transcatheter Aortic Valve.
Ann Thorac Surg. 2017 Sep;104(3):773-781. doi: 10.1016/j.athoracsur.2017.01.064. Epub 2017 Apr 12.
9
In-vitro characterization of self-expandable textile transcatheter aortic valves.
J Mech Behav Biomed Mater. 2020 Mar;103:103559. doi: 10.1016/j.jmbbm.2019.103559. Epub 2019 Nov 26.
10
Valve Type, Size, and Deployment Location Affect Hemodynamics in an In Vitro Valve-in-Valve Model.
JACC Cardiovasc Interv. 2016 Aug 8;9(15):1618-28. doi: 10.1016/j.jcin.2016.05.030. Epub 2016 Jul 13.

引用本文的文献

1
Polymeric Heart Valves: Do They Represent a Reliable Alternative to Current Prosthetic Devices?
Polymers (Basel). 2025 Feb 20;17(5):557. doi: 10.3390/polym17050557.
2
3
Analysis of the Effect of Thickness on the Performance of Polymeric Heart Valves.
J Funct Biomater. 2023 Jun 1;14(6):309. doi: 10.3390/jfb14060309.
5
Natural Polymers in Heart Valve Tissue Engineering: Strategies, Advances and Challenges.
Biomedicines. 2022 May 8;10(5):1095. doi: 10.3390/biomedicines10051095.
7
Fetal Transcatheter Trileaflet Heart Valve Hemodynamics: Implications of Scaling on Valve Mechanics and Turbulence.
Ann Biomed Eng. 2020 Jun;48(6):1683-1693. doi: 10.1007/s10439-020-02475-3. Epub 2020 Feb 12.
8
In-vitro characterization of self-expandable textile transcatheter aortic valves.
J Mech Behav Biomed Mater. 2020 Mar;103:103559. doi: 10.1016/j.jmbbm.2019.103559. Epub 2019 Nov 26.

本文引用的文献

1
A turbulence in vitro assessment of On-X and St Jude Medical prostheses.
J Thorac Cardiovasc Surg. 2020 Jan;159(1):88-97. doi: 10.1016/j.jtcvs.2019.02.046. Epub 2019 Feb 21.
2
Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients.
N Engl J Med. 2019 May 2;380(18):1695-1705. doi: 10.1056/NEJMoa1814052. Epub 2019 Mar 16.
3
Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients.
N Engl J Med. 2019 May 2;380(18):1706-1715. doi: 10.1056/NEJMoa1816885. Epub 2019 Mar 16.
4
Novel Polymeric Valve for Transcatheter Aortic Valve Replacement Applications: In Vitro Hemodynamic Study.
Ann Biomed Eng. 2019 Jan;47(1):113-125. doi: 10.1007/s10439-018-02119-7. Epub 2018 Sep 7.
5
Sinus Hemodynamics Variation with Tilted Transcatheter Aortic Valve Deployments.
Ann Biomed Eng. 2019 Jan;47(1):75-84. doi: 10.1007/s10439-018-02120-0. Epub 2018 Aug 27.
6
Stented valve dynamic behavior induced by polyester fiber leaflet material in transcatheter aortic valve devices.
J Mech Behav Biomed Mater. 2018 Oct;86:232-239. doi: 10.1016/j.jmbbm.2018.06.038. Epub 2018 Jun 28.
7
Impact of patient-specific morphologies on sinus flow stasis in transcatheter aortic valve replacement: An in vitro study.
J Thorac Cardiovasc Surg. 2019 Feb;157(2):540-549. doi: 10.1016/j.jtcvs.2018.05.086. Epub 2018 Jun 7.
8
An in vitro evaluation of turbulence after transcatheter aortic valve implantation.
J Thorac Cardiovasc Surg. 2018 Nov;156(5):1837-1848. doi: 10.1016/j.jtcvs.2018.05.042. Epub 2018 Jun 2.
9
Effect of severe bioprosthetic valve tissue ingrowth and inflow calcification on valve-in-valve performance.
J Biomech. 2018 Jun 6;74:171-179. doi: 10.1016/j.jbiomech.2018.04.039. Epub 2018 May 4.
10
Bioprosthetic aortic valve durability in the era of transcatheter aortic valve implantation.
Heart. 2018 Aug;104(16):1323-1332. doi: 10.1136/heartjnl-2017-311582. Epub 2018 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验