Max Planck Institute for Marine Microbiology, Bremen, Germany
Max Planck Institute for Marine Microbiology, Bremen, Germany.
mBio. 2019 Jun 25;10(3):e01112-19. doi: 10.1128/mBio.01112-19.
Since the discovery of symbioses between sulfur-oxidizing (thiotrophic) bacteria and invertebrates at hydrothermal vents over 40 years ago, it has been assumed that autotrophic fixation of CO by the symbionts drives these nutritional associations. In this study, we investigated " Kentron," the clade of symbionts hosted by , a diverse genus of ciliates which are found in marine coastal sediments around the world. Despite being the main food source for their hosts, Kentron bacteria lack the key canonical genes for any of the known pathways for autotrophic carbon fixation and have a carbon stable isotope fingerprint that is unlike other thiotrophic symbionts from similar habitats. Our genomic and transcriptomic analyses instead found metabolic features consistent with growth on organic carbon, especially organic and amino acids, for which they have abundant uptake transporters. All known thiotrophic symbionts have converged on using reduced sulfur to gain energy lithotrophically, but they are diverse in their carbon sources. Some clades are obligate autotrophs, while many are mixotrophs that can supplement autotrophic carbon fixation with heterotrophic capabilities similar to those in Kentron. Here we show that Kentron bacteria are the only thiotrophic symbionts that appear to be entirely heterotrophic, unlike all other thiotrophic symbionts studied to date, which possess either the Calvin-Benson-Bassham or the reverse tricarboxylic acid cycle for autotrophy. Many animals and protists depend on symbiotic sulfur-oxidizing bacteria as their main food source. These bacteria use energy from oxidizing inorganic sulfur compounds to make biomass autotrophically from CO, serving as primary producers for their hosts. Here we describe a clade of nonautotrophic sulfur-oxidizing symbionts, " Kentron," associated with marine ciliates. They lack genes for known autotrophic pathways and have a carbon stable isotope fingerprint heavier than other symbionts from similar habitats. Instead, they have the potential to oxidize sulfur to fuel the uptake of organic compounds for heterotrophic growth, a metabolic mode called chemolithoheterotrophy that is not found in other symbioses. Although several symbionts have heterotrophic features to supplement primary production, in Kentron they appear to supplant it entirely.
自 40 多年前在热液喷口发现硫氧化(硫营养)细菌与无脊椎动物共生以来,人们一直认为共生体的 CO 自养固定驱动了这些营养关联。在这项研究中,我们研究了“Kentron”,这是一种栖息在 中的共生体的进化枝, 是一种多样的纤毛虫属,分布在世界各地的海洋沿海沉积物中。尽管 Kentron 细菌是它们宿主的主要食物来源,但它们缺乏任何已知自养碳固定途径的关键典型基因,并且其碳稳定同位素指纹与来自类似栖息地的其他硫营养共生体不同。我们的基因组和转录组分析反而发现了与有机碳生长一致的代谢特征,特别是有机和氨基酸,它们有丰富的吸收转运蛋白。所有已知的硫营养共生体都已经趋同于使用还原硫进行无机营养生长,但它们在碳源方面存在多样性。一些进化枝是专性自养生物,而许多是混合营养生物,可以通过与 Kentron 相似的异养能力来补充自养碳固定。在这里,我们表明 Kentron 细菌是唯一似乎完全异养的硫营养共生体,与迄今为止研究过的所有其他硫营养共生体不同,它们要么拥有卡尔文-本森-巴斯汉姆或相反的三羧酸循环用于自养。许多动物和原生动物依赖共生的硫氧化细菌作为它们的主要食物来源。这些细菌利用氧化无机硫化合物的能量从 CO 中自养地制造生物量,作为宿主的初级生产者。在这里,我们描述了一种与海洋纤毛虫相关的非自养硫氧化共生体进化枝“Kentron”。它们缺乏已知自养途径的基因,并且其碳稳定同位素指纹比来自类似栖息地的其他共生体重。相反,它们有可能氧化硫来为异养生长吸收有机化合物提供燃料,这种代谢模式称为化学生物异养,在其他共生体中没有发现。尽管有几种共生体具有补充初级生产的异养特征,但在 Kentron 中,它们似乎完全取代了它。