Suppr超能文献

热液喷口海绵中 SUP05 硫氧化菌属与噬菌体的潜在相互作用。

Potential Interactions between Clade SUP05 Sulfur-Oxidizing Bacteria and Phages in Hydrothermal Vent Sponges.

机构信息

Shenzhen University-HKUST Joint Marine Science PhD Program, Shenzhen University, Shenzhen, People's Republic of China.

Shenzhen University-HKUST Joint Marine Science PhD Program, Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong.

出版信息

Appl Environ Microbiol. 2019 Oct 30;85(22). doi: 10.1128/AEM.00992-19. Print 2019 Nov 15.

Abstract

In deep-sea hydrothermal vent environments, sulfur-oxidizing bacteria belonging to the clade SUP05 are crucial symbionts of invertebrate animals. Marine viruses, as the most abundant biological entities in the ocean, play essential roles in regulating the sulfur metabolism of the SUP05 bacteria. To date, vent sponge-associated SUP05 and their phages have not been well documented. The current study analyzed microbiomes of Haplosclerida sponges from hydrothermal vents in the Okinawa Trough and recovered the dominant SUP05 genome, designated VS-SUP05. Phylogenetic analysis showed that VS-SUP05 was closely related to endosymbiotic SUP05 strains from mussels living in deep-sea hydrothermal vent fields. Homology and metabolic pathway comparisons against free-living and symbiotic SUP05 strains revealed that the VS-SUP05 genome shared many features with the deep-sea mussel symbionts. Supporting a potentially symbiotic lifestyle, the VS-SUP05 genome contained genes involved in the synthesis of essential amino acids and cofactors that are desired by the host. Analysis of sponge-associated viral sequences revealed putative VS-SUP05 phages, all of which were double-stranded viruses belonging to the families , , , and Among the phage sequences, one contig contained metabolic genes (, , and ) involved in iron-sulfur cluster formation. Interestingly, genome sequence comparison revealed horizontal transfer of the gene among phages, VS-SUP05, and other symbiotic SUP05 strains, indicating an interaction between marine phages and SUP05 symbionts. Overall, our findings confirm the presence of SUP05 bacteria and their phages in sponges from deep-sea vents and imply a beneficial interaction that allows adaptation of the host sponge to the hydrothermal vent environment. Chemosynthetic SUP05 bacteria dominate the microbial communities of deep-sea hydrothermal vents around the world, SUP05 bacteria utilize reduced chemical compounds in vent fluids and commonly form symbioses with invertebrate organisms. This symbiotic relationship could be key to adapting to such unique and extreme environments. Viruses are the most abundant biological entities on the planet and have been identified in hydrothermal vent environments. However, their interactions with the symbiotic microbes of the SUP05 clade, along with their role in the symbiotic system, remain unclear. Here, using metagenomic sequence-based analyses, we determined that bacteriophages may support metabolism in SUP05 bacteria and play a role in the sponge-associated symbiosis system in hydrothermal vent environments.

摘要

在深海热液喷口环境中,属于 SUP05 进化枝的硫氧化细菌是无脊椎动物的重要共生体。海洋病毒作为海洋中最丰富的生物实体,在调节 SUP05 细菌的硫代谢中发挥着重要作用。迄今为止,喷口海绵相关的 SUP05 及其噬菌体尚未得到很好的记录。本研究分析了冲绳海槽热液喷口海绵的微生物组,并回收了占优势的 SUP05 基因组,命名为 VS-SUP05。系统发育分析表明,VS-SUP05 与生活在深海热液喷口场的贻贝内共生 SUP05 菌株密切相关。与自由生活和共生 SUP05 菌株的同源性和代谢途径比较表明,VS-SUP05 基因组与深海贻贝共生体有许多共同特征。支持潜在的共生生活方式,VS-SUP05 基因组包含参与合成宿主所需的必需氨基酸和辅因子的基因。对海绵相关病毒序列的分析揭示了潜在的 VS-SUP05 噬菌体,它们都是双链病毒,属于科、科、科和科。在噬菌体序列中,一个连续序列包含参与铁硫簇形成的代谢基因(、和)。有趣的是,基因组序列比较显示了基因在噬菌体、VS-SUP05 和其他共生 SUP05 菌株之间的水平转移,表明海洋噬菌体和 SUP05 共生体之间存在相互作用。总的来说,我们的研究结果证实了深海喷口海绵中存在 SUP05 细菌及其噬菌体,并暗示了一种有利于宿主海绵适应热液喷口环境的共生相互作用。化能合成 SUP05 细菌是世界范围内深海热液喷口微生物群落的优势种群,SUP05 细菌利用喷口流体中的还原化合物,通常与无脊椎动物形成共生关系。这种共生关系可能是适应这种独特而极端环境的关键。病毒是地球上最丰富的生物实体,已在热液喷口环境中被发现。然而,它们与 SUP05 进化枝的共生微生物之间的相互作用及其在共生系统中的作用尚不清楚。在这里,我们使用基于宏基因组序列的分析方法,确定噬菌体可能支持 SUP05 细菌的代谢,并在热液喷口环境中的海绵相关共生系统中发挥作用。

相似文献

1
Potential Interactions between Clade SUP05 Sulfur-Oxidizing Bacteria and Phages in Hydrothermal Vent Sponges.
Appl Environ Microbiol. 2019 Oct 30;85(22). doi: 10.1128/AEM.00992-19. Print 2019 Nov 15.
2
Unique phage-bacterium interplay in sponge holobionts from the southern Okinawa Trough hydrothermal vent.
Environ Microbiol Rep. 2021 Oct;13(5):675-683. doi: 10.1111/1758-2229.12979. Epub 2021 Jun 14.
7
Metagenomic Analysis of Genes Encoding Nutrient Cycling Pathways in the Microbiota of Deep-Sea and Shallow-Water Sponges.
Mar Biotechnol (NY). 2016 Dec;18(6):659-671. doi: 10.1007/s10126-016-9725-5. Epub 2016 Nov 7.
8
Origins and evolutionary flexibility of chemosynthetic symbionts from deep-sea animals.
Biol Bull. 2012 Aug;223(1):123-37. doi: 10.1086/BBLv223n1p123.
9
Metagenomic Signatures of Microbial Communities in Deep-Sea Hydrothermal Sediments of Azores Vent Fields.
Microb Ecol. 2018 Aug;76(2):387-403. doi: 10.1007/s00248-018-1144-x. Epub 2018 Jan 21.
10
Virus diversity and interactions with hosts in deep-sea hydrothermal vents.
Microbiome. 2022 Dec 24;10(1):235. doi: 10.1186/s40168-022-01441-6.

引用本文的文献

1
Survival strategies for the microbiome in a vent-dwelling glass sponge from the middle Okinawa Trough.
Front Microbiol. 2025 Aug 29;16:1636046. doi: 10.3389/fmicb.2025.1636046. eCollection 2025.
3
Viruses under the Antarctic Ice Shelf are active and potentially involved in global nutrient cycles.
Nat Commun. 2023 Dec 14;14(1):8295. doi: 10.1038/s41467-023-44028-x.
6
Stability of the Microbiome of the Sponge () in the Western Antarctic Peninsula.
Front Microbiol. 2022 Apr 4;13:827863. doi: 10.3389/fmicb.2022.827863. eCollection 2022.
8
Niche differentiation of sulfur-oxidizing bacteria (SUP05) in submarine hydrothermal plumes.
ISME J. 2022 Jun;16(6):1479-1490. doi: 10.1038/s41396-022-01195-x. Epub 2022 Jan 26.
10
Unique phage-bacterium interplay in sponge holobionts from the southern Okinawa Trough hydrothermal vent.
Environ Microbiol Rep. 2021 Oct;13(5):675-683. doi: 10.1111/1758-2229.12979. Epub 2021 Jun 14.

本文引用的文献

1
Fueled by methane: deep-sea sponges from asphalt seeps gain their nutrition from methane-oxidizing symbionts.
ISME J. 2019 May;13(5):1209-1225. doi: 10.1038/s41396-019-0346-7. Epub 2019 Jan 15.
2
Morphological characterization of virus-like particles in coral reef sponges.
PeerJ. 2018 Oct 17;6:e5625. doi: 10.7717/peerj.5625. eCollection 2018.
3
A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life.
Nat Biotechnol. 2018 Nov;36(10):996-1004. doi: 10.1038/nbt.4229. Epub 2018 Aug 27.
4
Reef invertebrate viromics: diversity, host specificity and functional capacity.
Environ Microbiol. 2018 Jun;20(6):2125-2141. doi: 10.1111/1462-2920.14110. Epub 2018 Apr 30.
6
A communal catalogue reveals Earth's multiscale microbial diversity.
Nature. 2017 Nov 23;551(7681):457-463. doi: 10.1038/nature24621. Epub 2017 Nov 1.
7
The sponge microbiome project.
Gigascience. 2017 Oct 1;6(10):1-7. doi: 10.1093/gigascience/gix077.
8
Symbiosis: Viruses as Intimate Partners.
Annu Rev Virol. 2017 Sep 29;4(1):123-139. doi: 10.1146/annurev-virology-110615-042323. Epub 2017 Aug 8.
10
Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization.
ISME J. 2017 Nov;11(11):2465-2478. doi: 10.1038/ismej.2017.101. Epub 2017 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验