Suppr超能文献

从 MRI 扫描仪日志数据中自动提取计费代码。

Automated Billing Code Retrieval from MRI Scanner Log Data.

机构信息

Institute of Medical Engineering, Technical University of Applied Sciences Amberg-Weiden, Weiden, Germany.

Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.

出版信息

J Digit Imaging. 2019 Dec;32(6):1103-1111. doi: 10.1007/s10278-019-00241-z.

Abstract

Although the level of digitalization and automation steadily increases in radiology, billing coding for magnetic resonance imaging (MRI) exams in the radiology department is still based on manual input from the technologist. After the exam completion, the technologist enters the corresponding exam codes that are associated with billing codes in the radiology information system. Moreover, additional billing codes are added or removed, depending on the performed procedure. This workflow is time-consuming and we showed that billing codes reported by the technologists contain errors. The coding workflow can benefit from an automated system, and thus a prediction model for automated assignment of billing codes for MRI exams based on MRI log data is developed in this work. To the best of our knowledge, it is the first attempt to focus on the prediction of billing codes from modality log data. MRI log data provide a variety of information, including the set of executed MR sequences, MR scanner table movements, and given a contrast medium. MR sequence names are standardized using a heuristic approach and incorporated into the features for the prediction. The prediction model is trained on 9754 MRI exams and tested on 1 month of log data (423 MRI exams) from two MRI scanners of the radiology site for the Swiss medical tariffication system Tarmed. The developed model, an ensemble of classifier chains with multilayer perceptron as a base classifier, predicts medical billing codes for MRI exams with a micro-averaged F1-score of 97.8% (recall 98.1%, precision 97.5%). Manual coding reaches a micro-averaged F1-score of 98.1% (recall 97.4%, precision 98.8%). Thus, the performance of automated coding is close to human performance. Integrated into the clinical environment, this work has the potential to free the technologist from a non-value adding an administrative task, therefore enhance the MRI workflow, and prevent coding errors.

摘要

尽管放射科的数字化和自动化水平稳步提高,但放射科的磁共振成像 (MRI) 检查的计费编码仍然基于技师的手动输入。检查完成后,技师会在放射信息系统中输入与计费码相对应的检查码。此外,根据执行的程序,还会添加或删除其他计费码。这种工作流程既耗时又费力,而且我们发现技师报告的计费码存在错误。计费编码工作流程可以受益于自动化系统,因此,在这项工作中,我们开发了一种基于 MRI 日志数据自动分配计费码的预测模型。据我们所知,这是首次尝试专注于从模态日志数据预测计费码。MRI 日志数据提供了各种信息,包括执行的 MR 序列集、MR 扫描仪台移动以及给定的造影剂。通过启发式方法对 MR 序列名称进行标准化,并将其纳入预测特征中。该预测模型是在 9754 次 MRI 检查中进行训练,并在来自两个 MRI 扫描仪的 1 个月日志数据(423 次 MRI 检查)上进行测试,这些数据来自瑞士医疗计费系统 Tarmed 的放射科站点。开发的模型是一个分类器链的集合,以多层感知机作为基础分类器,对 MRI 检查的医疗计费码进行预测,其微平均 F1 得分为 97.8%(召回率为 98.1%,精度为 97.5%)。手动编码的微平均 F1 得分为 98.1%(召回率为 97.4%,精度为 98.8%)。因此,自动编码的性能接近人类的表现。集成到临床环境中,这项工作有可能使技师从非增值的行政任务中解放出来,从而增强 MRI 工作流程并防止编码错误。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/981f/6841869/f1b47f4d98c3/10278_2019_241_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验