Cardenal Ashley D, Maity Asim, Gao Wen-Yang, Ashirov Rahym, Hyun Sung-Min, Powers David C
Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States.
Inorg Chem. 2019 Aug 19;58(16):10543-10553. doi: 10.1021/acs.inorgchem.9b01191. Epub 2019 Jun 26.
Hypervalent iodine compounds formally feature expanded valence shells at iodine. These reagents are broadly used in synthetic chemistry due to the ability to participate in well-defined oxidation-reduction processes and because the ligand-exchange chemistry intrinsic to the hypervalent center allows hypervalent iodine compounds to be applied to a broad array of oxidative substrate functionalization reactions. We recently developed methods to generate these compounds from O that are predicated on diverting reactive intermediates of aldehyde autoxidation toward the oxidation of aryl iodides. Coupling the aerobic oxidation of aryl iodides with catalysts that effect C-H bond oxidation would provide a strategy to achieve aerobic C-H oxidation chemistry. In this Forum Article, we discuss the aspects of hypervalent iodine chemistry and bonding that render this class of reagents attractive lynchpins for aerobic oxidation chemistry. We then discuss the oxidation processes relevant to the aerobic preparation of 2-(-butylsulfonyl)iodosylbenzene, which is a popular hypervalent iodine reagent for use with porous metal-organic framework (MOF)-based catalysts because it displays significantly enhanced solubility as compared with unsubstituted iodosylbenzene. We demonstrate that popular synthetic methods to this reagent often provide material that displays unpredictable disproportionation behavior due to the presence of trace impurities. We provide a revised synthetic route that avoids impurities common in the reported methods and provides access to material that displays predictable stability. Finally, we describe the coordination chemistry of hypervalent iodine compounds with metal clusters relevant to MOF chemistry and discuss the potential implications of this coordination chemistry to catalysis in MOF scaffolds.
高价碘化合物在形式上具有碘的扩展价层。由于能够参与明确的氧化还原过程,并且高价中心固有的配体交换化学使得高价碘化合物可应用于广泛的氧化底物官能团化反应,这些试剂在合成化学中被广泛使用。我们最近开发了从O生成这些化合物的方法,该方法基于将醛自氧化的反应中间体转向芳基碘的氧化。将芳基碘的需氧氧化与影响C-H键氧化的催化剂相结合,将提供一种实现需氧C-H氧化化学的策略。在这篇论坛文章中,我们讨论了高价碘化学和键合的各个方面,这些方面使这类试剂成为需氧氧化化学中有吸引力的关键物质。然后,我们讨论了与2-(叔丁基磺酰基)碘酰苯的需氧制备相关的氧化过程,2-(叔丁基磺酰基)碘酰苯是一种与多孔金属有机框架(MOF)基催化剂一起使用的流行高价碘试剂,因为与未取代的碘酰苯相比,它具有显著增强的溶解性。我们证明,该试剂的常用合成方法由于存在痕量杂质,往往会提供具有不可预测歧化行为的材料。我们提供了一条修订的合成路线,避免了报道方法中常见的杂质,并提供了具有可预测稳定性的材料。最后,我们描述了高价碘化合物与与MOF化学相关的金属簇的配位化学,并讨论了这种配位化学对MOF支架中催化作用的潜在影响。