Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing, Jiangsu, China.
Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Nanjing, Jiangsu, China.
PLoS One. 2019 Jun 26;14(6):e0218626. doi: 10.1371/journal.pone.0218626. eCollection 2019.
Short-term traffic speed prediction is a key component of proactive traffic control in the intelligent transportation systems. The objective of this study is to investigate the short-term traffic speed prediction under different data collection time intervals. Traffic speed data was collected from an urban freeway in Edmonton, Canada. A seasonal autoregressive integrated moving average plus seasonal discrete grey model structure (SARIMA-SDGM) was proposed to perform the traffic speed prediction. The model performance of SARIMA-SDGM model was compared with that of the seasonal autoregressive integrated moving average (SARIMA) model, seasonal discrete grey model (SDGM), artificial neural network (ANN) model, and support vector regression (SVR) model. The results showed that SARIMA-SDGM model performs best with the lowest mean absolute error (MAE), mean absolute percentage error (MAPE), and the root mean square error (RMSE). The traffic speed prediction accuracy under different time intervals were compared based on the SARIMA-SDGM model. The results showed that the prediction accuracy improves with the increase in time interval. In addition, when the time interval is greater than 10 min, the prediction results yield stable prediction accuracy.
短期交通速度预测是智能交通系统中主动交通控制的关键组成部分。本研究的目的是研究不同数据采集时间间隔下的短期交通速度预测。从加拿大埃德蒙顿的一条城市高速公路收集交通速度数据。提出了季节性自回归综合移动平均加季节性离散灰色模型结构(SARIMA-SDGM)来进行交通速度预测。比较了 SARIMA-SDGM 模型、季节性自回归综合移动平均(SARIMA)模型、季节性离散灰色模型(SDGM)、人工神经网络(ANN)模型和支持向量回归(SVR)模型的模型性能。结果表明,SARIMA-SDGM 模型的平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)最低,性能最佳。基于 SARIMA-SDGM 模型比较了不同时间间隔下的交通速度预测精度。结果表明,预测精度随时间间隔的增加而提高。此外,当时间间隔大于 10 分钟时,预测结果产生稳定的预测精度。