Suppr超能文献

加拿大季节性流感活动预测——为公共卫生准备比较季节性自回归综合移动平均和人工神经网络方法。

Forecasting seasonal influenza activity in Canada-Comparing seasonal Auto-Regressive integrated moving average and artificial neural network approaches for public health preparedness.

机构信息

Department of Population Medicine, University of Guelph, Guelph, Ontario, Canada.

Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.

出版信息

Zoonoses Public Health. 2024 May;71(3):304-313. doi: 10.1111/zph.13114. Epub 2024 Feb 8.

Abstract

INTRODUCTION

Public health preparedness is based on timely and accurate information. Time series forecasting using disease surveillance data is an important aspect of preparedness. This study compared two approaches of time series forecasting: seasonal auto-regressive integrated moving average (SARIMA) modelling and the artificial neural network (ANN) algorithm. The goal was to model weekly seasonal influenza activity in Canada using SARIMA and compares its predictive accuracy, based on root mean square prediction error (RMSE) and mean absolute prediction error (MAE), to that of an ANN.

METHODS

An initial SARIMA model was fit using automated model selection by minimizing the Akaike information criterion (AIC). Further inspection of the autocorrelation function and partial autocorrelation function led to 'manual' model improvements. ANNs were trained iteratively, using an automated process to minimize the RMSE and MAE.

RESULTS

A total of 378, 462 cases of influenza was reported in Canada from the 2010-2011 influenza season to the end of the 2019-2020 influenza season, with an average yearly incidence risk of 20.02 per 100,000 population. Automated SARIMA modelling was the better method in terms of forecasting accuracy (per RMSE and MAE). However, the ANN correctly predicted the peak week of disease incidence while the other models did not.

CONCLUSION

Both the ANN and SARIMA models have shown to be capable tools in forecasting seasonal influenza activity in Canada. It was shown that applying both in tandem is beneficial, SARIMA better forecasted overall incidence while ANN correctly predicted the peak week.

摘要

简介

公共卫生防备工作基于及时、准确的信息。使用疾病监测数据进行时间序列预测是防备工作的一个重要方面。本研究比较了两种时间序列预测方法:季节性自回归综合移动平均(SARIMA)建模和人工神经网络(ANN)算法。目的是使用 SARIMA 对加拿大季节性流感活动进行每周建模,并根据均方根预测误差(RMSE)和平均绝对预测误差(MAE)比较其预测准确性,与 ANN 的预测准确性进行比较。

方法

使用最小化赤池信息量准则(AIC)的自动模型选择来拟合初始 SARIMA 模型。进一步检查自相关函数和偏自相关函数导致了“手动”模型改进。ANN 是通过自动过程进行训练的,该过程最小化 RMSE 和 MAE。

结果

从 2010-2011 流感季节到 2019-2020 流感季节末,加拿大共报告了 378462 例流感病例,平均每年每 10 万人中有 20.02 例发病风险。在预测准确性方面(根据 RMSE 和 MAE),自动 SARIMA 建模是更好的方法。然而,ANN 正确预测了疾病发病率的高峰周,而其他模型则没有。

结论

ANN 和 SARIMA 模型都已被证明是在加拿大预测季节性流感活动的有效工具。结果表明,同时应用这两种模型是有益的,SARIMA 更好地预测了总体发病率,而 ANN 则正确预测了高峰周。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验