Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, FI-70210, Finland.
Genes (Basel). 2019 Jun 25;10(6):479. doi: 10.3390/genes10060479.
This review discusses the use of systems biology in understanding the biological effectsof electromagnetic fields, with particular focus on induction of genomic instability and cancer. Weintroduce basic concepts of the dynamical systems theory such as the state space and attractors andthe use of these concepts in understanding the behavior of complex biological systems. We thendiscuss genomic instability in the framework of the dynamical systems theory, and describe thehypothesis that environmentally induced genomic instability corresponds to abnormal attractorstates; large enough environmental perturbations can force the biological system to leave normalevolutionarily optimized attractors (corresponding to normal cell phenotypes) and migrate to lessstable variant attractors. We discuss experimental approaches that can be coupled with theoreticalsystems biology such as testable predictions, derived from the theory and experimental methods,that can be used for measuring the state of the complex biological system. We also reviewpotentially informative studies and make recommendations for further studies.
这篇综述讨论了系统生物学在理解电磁场生物学效应中的应用,特别关注了诱导基因组不稳定性和癌症的问题。我们介绍了动力系统理论的基本概念,如状态空间和吸引子,以及这些概念在理解复杂生物系统行为中的应用。然后,我们在动力系统理论的框架内讨论了基因组不稳定性,并提出了这样的假设,即环境诱导的基因组不稳定性对应于异常吸引子状态;足够大的环境扰动可以迫使生物系统离开正常进化优化的吸引子(对应于正常细胞表型),并迁移到不稳定的变异吸引子。我们讨论了可以与理论系统生物学相结合的实验方法,例如可以从理论和实验方法中得出的可测试预测,这些预测可用于测量复杂生物系统的状态。我们还回顾了有潜在信息价值的研究,并为进一步的研究提出了建议。