Suppr超能文献

模拟疾病进展的吸引子景观:一种基于网络的方法。

Modeling the Attractor Landscape of Disease Progression: a Network-Based Approach.

作者信息

Taherian Fard Atefeh, Ragan Mark A

机构信息

Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD, Australia.

出版信息

Front Genet. 2017 Apr 18;8:48. doi: 10.3389/fgene.2017.00048. eCollection 2017.

Abstract

Genome-wide regulatory networks enable cells to function, develop, and survive. Perturbation of these networks can lead to appearance of a disease phenotype. Inspired by Conrad Waddington's epigenetic landscape of cell development, we use a Hopfield network formalism to construct an attractor landscape model of disease progression based on protein- or gene-correlation networks of Parkinson's disease, glioma, and colorectal cancer. Attractors in this landscape correspond to normal and disease states of the cell. We introduce approaches to estimate the size and robustness of these attractors, and take a network-based approach to study their biological features such as the key genes and their functions associated with the attractors. Our results show that the attractor of cancer cells is wider than the attractor of normal cells, suggesting a heterogeneous nature of cancer. Perturbation analysis shows that robustness depends on characteristics of the input data (number of samples per time-point, and the fraction which converge to an attractor). We identify unique gene interactions at each stage, which reflect the temporal rewiring of the gene regulatory network (GRN) with disease progression. Our model of the attractor landscape, constructed from large-scale gene expression profiles of individual patients, captures snapshots of disease progression and identifies gene interactions specific to different stages, opening the way for development of stage-specific therapeutic strategies.

摘要

全基因组调控网络使细胞能够发挥功能、发育并存活。这些网络的扰动会导致疾病表型的出现。受康拉德·沃丁顿细胞发育表观遗传景观的启发,我们使用霍普菲尔德网络形式,基于帕金森病、胶质瘤和结直肠癌的蛋白质或基因相关网络构建疾病进展的吸引子景观模型。该景观中的吸引子对应于细胞的正常状态和疾病状态。我们介绍了估计这些吸引子大小和稳健性的方法,并采用基于网络的方法研究它们的生物学特征,如与吸引子相关的关键基因及其功能。我们的结果表明,癌细胞的吸引子比正常细胞的吸引子更宽泛,这表明癌症具有异质性。扰动分析表明,稳健性取决于输入数据的特征(每个时间点的样本数量以及收敛到吸引子的比例)。我们确定了每个阶段独特的基因相互作用,这反映了基因调控网络(GRN)随疾病进展的时间性重新布线。我们从个体患者的大规模基因表达谱构建的吸引子景观模型,捕捉了疾病进展的快照,并识别了不同阶段特有的基因相互作用,为制定阶段特异性治疗策略开辟了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7ac/5394169/4932ee4d8e43/fgene-08-00048-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验