Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138673 Singapore, Singapore.
Department of Biochemistry, National University of Singapore, 117596 Singapore, Singapore.
Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):13958-13963. doi: 10.1073/pnas.1902189116. Epub 2019 Jun 26.
In the disease familial amyloidosis, Finnish type (FAF), also known as AGel amyloidosis (AGel), the mechanism by which point mutations in the calcium-regulated actin-severing protein gelsolin lead to furin cleavage is not understood in the intact protein. Here, we provide a structural and biochemical characterization of the FAF variants. X-ray crystallography structures of the FAF mutant gelsolins demonstrate that the mutations do not significantly disrupt the calcium-free conformations of gelsolin. Small-angle X-ray-scattering (SAXS) studies indicate that the FAF calcium-binding site mutants are slower to activate, whereas G167R is as efficient as the wild type. Actin-regulating studies of the gelsolins at the furin cleavage pH (6.5) show that the mutant gelsolins are functional, suggesting that they also adopt relatively normal active conformations. Deletion of gelsolin domains leads to sensitization to furin cleavage, and nanobody-binding protects against furin cleavage. These data indicate instability in the second domain of gelsolin (G2), since loss or gain of G2-stabilizing interactions impacts the efficiency of cleavage by furin. To demonstrate this principle, we engineered non-FAF mutations in G3 that disrupt the G2-G3 interface in the calcium-activated structure. These mutants led to increased furin cleavage. We carried out molecular dynamics (MD) simulations on the FAF and non-FAF mutant G2-G3 fragments of gelsolin. All mutants showed an increase in the distance between the center of masses of the 2 domains (G2 and G3). Since G3 covers the furin cleavage site on G2 in calcium-activated gelsolin, this suggests that destabilization of this interface is a critical step in cleavage.
在家族性淀粉样变性病芬兰型(FAF),也称为 A 型凝胶淀粉样变性(AGel)中,钙调节肌动蛋白切割蛋白gelsolin 点突变导致弗林蛋白酶切割的机制在完整蛋白中尚不清楚。在这里,我们提供了 FAF 变体的结构和生化特征。FAF 突变gelsolins 的 X 射线晶体结构表明,突变不会显著破坏无钙状态下的gelsolin 构象。小角度 X 射线散射(SAXS)研究表明,FAF 钙结合位点突变体的激活速度较慢,而 G167R 与野生型一样有效。在弗林蛋白酶切割 pH(6.5)下对gelsolins 的肌动蛋白调节研究表明,突变 gelsolins 具有功能,表明它们也采用相对正常的活性构象。gelsolin 结构域缺失会导致对弗林蛋白酶切割的敏感性增加,而纳米体结合可防止弗林蛋白酶切割。这些数据表明 gelsolin 的第二个结构域(G2)不稳定,因为 G2 稳定相互作用的丧失或获得会影响弗林蛋白酶切割的效率。为了证明这一原理,我们在 G3 中设计了非 FAF 突变,这些突变破坏了钙激活结构中 G2-G3 界面。这些突变导致弗林蛋白酶切割增加。我们对 FAF 和非 FAF 突变的 gelsolin G2-G3 片段进行了分子动力学(MD)模拟。所有突变体都显示出两个结构域(G2 和 G3)质心之间距离的增加。由于 G3 在钙激活的 gelsolin 中覆盖了 G2 的弗林蛋白酶切割位点,这表明该界面的不稳定性是切割的关键步骤。