Departments of Chemistry and Molecular and Experimental Medicine, The Skaggs Institute for Chemical Biology, La Jolla, CA, USA.
Crit Rev Biochem Mol Biol. 2012 May-Jun;47(3):282-96. doi: 10.3109/10409238.2012.661401. Epub 2012 Feb 24.
Protein misassembly into aggregate structures, including cross-β-sheet amyloid fibrils, is linked to diseases characterized by the degeneration of post-mitotic tissue. While amyloid fibril deposition in the extracellular space certainly disrupts cellular and tissue architecture late in the course of amyloid diseases, strong genetic, pathological and pharmacologic evidence suggests that the process of amyloid fibril formation itself, known as amyloidogenesis, likely causes these maladies. It seems that the formation of oligomeric aggregates during the amyloidogenesis process causes the proteotoxicity and cytotoxicity characteristic of these disorders. Herein, we review what is known about the genetics, biochemistry and pathology of familial amyloidosis of Finnish type (FAF) or gelsolin amyloidosis. Briefly, autosomal dominant D187N or D187Y mutations compromise Ca(2+) binding in domain 2 of gelsolin, allowing domain 2 to sample unfolded conformations. When domain 2 is unfolded, gelsolin is subject to aberrant furin endoproteolysis as it passes through the Golgi on its way to the extracellular space. The resulting C-terminal 68 kDa fragment (C68) is susceptible to extracellular endoproteolytic events, possibly mediated by a matrix metalloprotease, affording 8 and 5 kDa amyloidogenic fragments of gelsolin. These amyloidogenic fragments deposit systemically, causing a variety of symptoms including corneal lattice dystrophy and neurodegeneration. The first murine model of the disease recapitulates the aberrant processing of mutant plasma gelsolin, amyloid deposition, and the degenerative phenotype. We use what we have learned from our biochemical studies, as well as insight from mouse and human pathology to propose therapeutic strategies that may halt the progression of FAF.
蛋白质错误组装成聚集体结构,包括交叉-β-片层淀粉样纤维,与由有丝分裂后组织退化引起的疾病有关。虽然细胞外空间中的淀粉样纤维沉积肯定会破坏淀粉样疾病过程后期的细胞和组织结构,但强有力的遗传、病理和药理学证据表明,淀粉样纤维形成本身的过程,即淀粉样变性,可能导致这些疾病。似乎在淀粉样变性过程中寡聚体聚集的形成导致了这些疾病的蛋白毒性和细胞毒性特征。在此,我们回顾了芬兰型家族性淀粉样变性(FAF)或胶凝蛋白淀粉样变性的遗传学、生物化学和病理学知识。简要地说,常染色体显性 D187N 或 D187Y 突变使钙结合域 2 中的钙结合能力受损,允许域 2 采样未折叠构象。当域 2 处于未折叠状态时,胶凝蛋白在通过高尔基体进入细胞外空间的过程中易受异常的弗林内切蛋白酶的影响。由此产生的 C 端 68 kDa 片段(C68)易受细胞外内切蛋白酶的影响,可能由基质金属蛋白酶介导,赋予胶凝蛋白的 8 和 5 kDa 淀粉样片段。这些淀粉样片段在全身沉积,引起各种症状,包括角膜格子状营养不良和神经退行性变。该疾病的第一个小鼠模型再现了突变型血浆胶凝蛋白的异常加工、淀粉样沉积和退行性表型。我们利用我们从生化研究中获得的知识,以及从老鼠和人类病理学中获得的见解,提出了可能阻止 FAF 进展的治疗策略。