Azargun Mohammad, Meister Paul J, Gauld James W, Fridgen Travis D
Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada.
Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada.
Phys Chem Chem Phys. 2019 Jul 17;21(28):15319-15326. doi: 10.1039/c9cp01651a.
A combination of experimental trapped-ion mass spectrometric studies and computational chemistry has been used in the present work to assess the intrinsic properties of the potassiated 9-ethylguanine (9eG) self-assembled quadruplex, K2(9eG)122+, in the gas phase. Infrared multiple photon dissociation (IRMPD) spectroscopy in the N-H/C-H stretching region (2700-3800 cm-1) revealed that this G-quadruplex is a sandwich-type structure with two G-tetrads sandwiching each of the two K+, very similar to the structure determined previously for the K(9eG)8+ complexes. The stability of K2(9eG)122+ toward unimolecular dissociation and its binding energy were examined using energy-resolved sustained off-resonance collision induced dissociation (SORI-CID) and blackbody infrared radiative dissociation (BIRD) kinetics experiments. SORI-CID experiments showed that the self-assembled K2(9eG)122+ complex undergoes charge separation forming K(9eG)8+ and K(9eG)4+ compared to K(9eG)8+ which loses neutral 9eG. More interestingly, K2(9eG)122+ is more stable toward unimolecular dissociation activated by SORI-CID than the K(9eG)8+ complex. Temperature dependent BIRD kinetics for K2(9eG)122+ were consistent with energy-resolved SORI-CID results showing K2(9eG)122+ to have an activation energy of 225 ± 15 kJ mol-1, approximately 50 kJ mol-1 greater than that determined for K(9eG)8+. The extra stability of K2(9eG)122+ is apparently not thermodynamic stability, but most likely due to an energy barrier for dissociation.
在本研究中,结合使用了实验性的俘获离子质谱研究和计算化学方法,以评估气相中钾化的9-乙基鸟嘌呤(9eG)自组装四链体K2(9eG)122+的内在性质。在N-H/C-H伸缩区域(2700 - 3800 cm-1)的红外多光子解离(IRMPD)光谱表明,这种G-四链体是一种夹心型结构,两个G-四联体夹着两个K+中的每一个,这与先前确定的K(9eG)8+配合物的结构非常相似。使用能量分辨的持续非共振碰撞诱导解离(SORI-CID)和黑体红外辐射解离(BIRD)动力学实验,研究了K2(9eG)122+对单分子解离的稳定性及其结合能。SORI-CID实验表明,自组装的K2(9eG)122+配合物会发生电荷分离,形成K(9eG)8+和K(9eG)4+,而K(9eG)8+则会失去中性的9eG。更有趣的是,与K(9eG)8+配合物相比,K(9eG)122+对SORI-CID激活的单分子解离更稳定。K2(9eG)122+的温度依赖性BIRD动力学与能量分辨的SORI-CID结果一致,表明K2(9eG)122+的活化能为225±15 kJ mol-1,比K(9eG)8+的活化能大约高50 kJ mol-1。K2(9eG)122+的额外稳定性显然不是热力学稳定性,很可能是由于解离的能垒。