在受控微流环境中的金纳米粒子的生物分子冠。

The biomolecular corona of gold nanoparticles in a controlled microfluidic environment.

机构信息

Department of Molecular Medicine, "Sapienza" University of Rome, V.le Regina Elena 291, 00161 Rome, Italy.

Biomolecular Mass Spectrometry and Proteomics, Bijoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.

出版信息

Lab Chip. 2019 Aug 7;19(15):2557-2567. doi: 10.1039/c9lc00341j. Epub 2019 Jun 27.

Abstract

Nanoparticles (NPs) exposed to biological media are coated by proteins and other biomolecules forming a biomolecular corona (BC) on the particle surface. Recent studies have shown that shear stress as that created by laminar fluid flow generates more complex coronas with systematic changes in composition with respect to counterparts formed under static incubation. However, in most studies reported so far, dynamic environments have been produced by peristaltic pumps and comparing experimental results appears challenging. On the other side, generating shear stress by microfluidic devices could help to remove user variability and ensure better reproducibility of experimental data. This study was therefore aimed at exploring formation of NP-BC in a microfluidic environment. To this end, 100 nm gold nanoparticles and human plasma (HP) were used as models for nano-formulation and biological medium. We injected gold nanoparticles and HP in each of the islets of a remote-controlled microfluidic cartridge. Static incubation was used as a reference. BC-decorated NPs were thoroughly characterized by dynamic light scattering (DLS), micro-electrophoresis (ME), sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) and nano-liquid chromatography tandem mass spectrometry (nano-LC MS/MS). By varying the incubation time from 30 s to 2.5 min we demonstrate that BC is already determined by the earliest exposure time point and does not appreciably evolve in time. DLS and ME results demonstrate that the BC formed in a microfluidic chip is thicker and more negatively charged than its counterpart formed under static incubation. SDS-PAGE and nano-LC MS/MS revealed that the incubation procedure had a major effect on BC composition. As an example, immunoglobulins are the most abundant plasma proteins of the BC generated in a microfluidic environment (relative protein abundance ∼30%), while tissue leakage proteins (relative protein abundance ∼26%) are the most enriched proteins when the BC is formed upon static incubation. Potential implications in emerging biomedical research arenas are discussed.

摘要

纳米粒子(NPs)暴露于生物介质中会被蛋白质和其他生物分子覆盖,在粒子表面形成生物分子冠(BC)。最近的研究表明,层流流体产生的切应力会在粒子表面形成更复杂的BC,其组成会随着与静态孵育形成的对照物相比发生系统性变化。然而,在迄今为止报告的大多数研究中,通过蠕动泵产生动态环境,并且比较实验结果具有挑战性。另一方面,通过微流控装置产生切应力可以帮助消除用户变异性并确保实验数据更好的重现性。因此,本研究旨在探索纳米粒子在微流控环境中的形成。为此,使用 100nm 金纳米粒子和人血浆(HP)作为纳米制剂和生物介质的模型。我们将金纳米粒子和 HP 注入远程控制微流控盒的各个隔室中。静态孵育用作参考。通过动态光散射(DLS)、微电泳(ME)、十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE)和纳升液相色谱串联质谱(nano-LC MS/MS)对带有 BC 的 NPs 进行了全面表征。通过将孵育时间从 30s 变化到 2.5min,我们证明了 BC 早在最早的暴露时间点就已经确定,并且不会随时间明显演变。DLS 和 ME 结果表明,在微流控芯片中形成的 BC 比在静态孵育中形成的 BC 更厚且带更多负电荷。SDS-PAGE 和 nano-LC MS/MS 揭示了孵育程序对 BC 组成有重大影响。例如,在微流控环境中形成的 BC 中,免疫球蛋白是血浆蛋白中最丰富的(相对蛋白丰度约为 30%),而当在静态孵育中形成 BC 时,组织渗漏蛋白(相对蛋白丰度约为 26%)是最丰富的蛋白。讨论了在新兴生物医学研究领域的潜在影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索