Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India.
Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India.
Plant Physiol Biochem. 2020 Jan;146:143-156. doi: 10.1016/j.plaphy.2019.10.036. Epub 2019 Nov 11.
Nanoparticles (NPs) are known to adsorb proteins from their surroundings, forming NP-protein corona, which determines their fate, distribution, and effects, yet no information of protein corona (PC) has been gathered in the plants so far. Here we report, the analysis of temporally evolved (2 h-36 h) AuNP-protein coronas formed with Brassica juncea leaf crude protein & nuclear-enriched fraction. Protein coronas were characterized by the techniques including SDS PAGE (Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis), spectrophotometry, dynamic light scattering, zeta potential measurements, and Nano LC-MS/MS. Data analysis revealed the formation of two regimes (Regime I from 2 to 8 h & regime II from 16 to 36 h). Interestingly, coated AuNPs had approx. 30% higher zeta potential than pristine AuNPs after 36 h of interactions. The increase in hydrodynamic radii and adsorbed protein concentrations were consistent with the evolution of zeta potential, indicating the probable role of proteins in providing the better stability of AuNPs. MS analysis identified 97 proteins from regime I (soft corona) and 181 proteins from regime II (hard corona) of crude PC. On the other hand, 282 and 308 proteins were identified from nuclear soft and hard corona respectively, indicating better affinity of nuclear proteins. Besides, the high-affinity proteins (fold change ≥5) were found to be rich in lysine residues showing their involvement in promoting the adsorption. Notably, 27% of regime II corona proteins of the crude protein fraction were from energy-yielding pathways highlighting the potential ability AuNPs to influence the yield in Brassica juncea.
纳米粒子(NPs)已知会从其周围环境中吸附蛋白质,形成 NP-蛋白冠,从而决定其命运、分布和效应,但迄今为止,尚未在植物中收集到关于蛋白冠(PC)的信息。在这里,我们报告了与芸薹属植物叶粗蛋白和核富集部分形成的金纳米颗粒(AuNP)-蛋白冠的时间演变(2 h-36 h)分析。采用 SDS-PAGE(十二烷基硫酸钠聚丙烯酰胺凝胶电泳)、分光光度法、动态光散射、Zeta 电位测量和 Nano LC-MS/MS 等技术对蛋白冠进行了表征。数据分析显示形成了两个区(2 小时至 8 小时的第一区和 16 小时至 36 小时的第二区)。有趣的是,与原始 AuNPs 相比,在 36 小时的相互作用后,涂层 AuNPs 的 Zeta 电位高出约 30%。水动力半径和吸附蛋白浓度的增加与 Zeta 电位的演变一致,表明蛋白质可能在提供 AuNPs 的更好稳定性方面发挥作用。MS 分析从粗 PC 的第一区(软 corona)鉴定出 97 种蛋白质,从第二区(硬 corona)鉴定出 181 种蛋白质。另一方面,从核软 corona 和核硬 corona 分别鉴定出 282 种和 308 种蛋白质,表明核蛋白具有更好的亲和力。此外,高亲和力蛋白(倍数变化≥5)富含赖氨酸残基,表明它们参与促进吸附。值得注意的是,粗蛋白部分第二区 corona 蛋白中有 27%来自产能途径,这突显了 AuNPs 影响芸薹属植物产量的潜在能力。