Department of Ecology and Evolutionary Biology & Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI, USA.
Ecol Lett. 2019 Sep;22(9):1517-1534. doi: 10.1111/ele.13279. Epub 2019 Jun 26.
Plant-animal mutualistic networks sustain terrestrial biodiversity and human food security. Global environmental changes threaten these networks, underscoring the urgency for developing a predictive theory on how networks respond to perturbations. Here, I synthesise theoretical advances towards predicting network structure, dynamics, interaction strengths and responses to perturbations. I find that mathematical models incorporating biological mechanisms of mutualistic interactions provide better predictions of network dynamics. Those mechanisms include trait matching, adaptive foraging, and the dynamic consumption and production of both resources and services provided by mutualisms. Models incorporating species traits better predict the potential structure of networks (fundamental niche), while theory based on the dynamics of species abundances, rewards, foraging preferences and reproductive services can predict the extremely dynamic realised structures of networks, and may successfully predict network responses to perturbations. From a theoretician's standpoint, model development must more realistically represent empirical data on interaction strengths, population dynamics and how these vary with perturbations from global change. From an empiricist's standpoint, theory needs to make specific predictions that can be tested by observation or experiments. Developing models using short-term empirical data allows models to make longer term predictions of community dynamics. As more longer term data become available, rigorous tests of model predictions will improve.
植物-动物互惠网络维持着陆地生物多样性和人类粮食安全。全球环境变化威胁着这些网络,这凸显了迫切需要发展一种关于网络如何对干扰做出反应的预测理论。在这里,我综合了关于预测网络结构、动态、相互作用强度以及对干扰响应的理论进展。我发现,纳入互惠相互作用的生物学机制的数学模型可以更好地预测网络动态。这些机制包括特征匹配、适应性觅食,以及互惠关系提供的资源和服务的动态消耗和生产。纳入物种特征的模型可以更好地预测网络的潜在结构(基础生态位),而基于物种丰度、奖励、觅食偏好和生殖服务动态的理论可以预测网络极其动态的实现结构,并可能成功预测网络对干扰的响应。从理论学家的角度来看,模型的发展必须更真实地反映关于相互作用强度、种群动态以及这些动态如何随全球变化的干扰而变化的经验数据。从经验主义者的角度来看,理论需要做出可以通过观察或实验来检验的具体预测。使用短期经验数据来开发模型可以使模型对群落动态做出更长时间的预测。随着更多长期数据的出现,对模型预测的严格检验将得到改善。