Suppr超能文献

使用 AMBER18 进行相对自由能计算。

Using AMBER18 for Relative Free Energy Calculations.

机构信息

Department of Chemistry and the Department of Biochemistry and Molecular Biology , Michigan State University , 578 S. Shaw Lane , East Lansing , Michigan 48824 , United States.

Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States.

出版信息

J Chem Inf Model. 2019 Jul 22;59(7):3128-3135. doi: 10.1021/acs.jcim.9b00105. Epub 2019 Jun 20.

Abstract

With renewed interest in free energy methods in contemporary structure-based drug design, there is a pressing need to validate against multiple targets and force fields to assess the overall ability of these methods to accurately predict relative binding free energies. We computed relative binding free energies using graphics processing unit accelerated thermodynamic integration (GPU-TI) on a data set originally assembled by Schrödinger, Inc. Using their GPU free energy code (FEP+) and the OPLS2.1 force field combined with the REST2 enhanced sampling approach, these authors obtained an overall MUE of 0.9 kcal/mol and an overall RMSD of 1.14 kcal/mol. In our study using GPU-TI from AMBER with the AMBER14SB/GAFF1.8 force field but without enhanced sampling, we obtained an overall MUE of 1.17 kcal/mol and an overall RMSD of 1.50 kcal/mol for the 330 perturbations contained in this data set. A more detailed analysis of our results suggested that the observed differences between the two studies arise from differences in sampling protocols along with differences in the force fields employed. Future work should address the problem of establishing benchmark quality results with robust statistical error bars obtained through multiple independent runs and enhanced sampling, which is possible with the GPU-accelerated features in AMBER.

摘要

随着当代基于结构的药物设计中对自由能方法的重新关注,迫切需要针对多个靶点和力场进行验证,以评估这些方法准确预测相对结合自由能的整体能力。我们使用图形处理单元加速热力学积分(GPU-TI)在 Schrödinger 公司最初组装的数据集中计算相对结合自由能。使用他们的 GPU 自由能代码(FEP+)和 OPLS2.1 力场以及 REST2 增强采样方法,这些作者获得了整体 MUE 为 0.9 kcal/mol 和整体 RMSD 为 1.14 kcal/mol。在我们使用 AMBER 的 GPU-TI 和 AMBER14SB/GAFF1.8 力场但不进行增强采样的研究中,我们对该数据集中包含的 330 个扰动得到了整体 MUE 为 1.17 kcal/mol 和整体 RMSD 为 1.50 kcal/mol。对我们结果的更详细分析表明,这两项研究之间的差异源于采样方案的差异以及所使用的力场的差异。未来的工作应该解决通过多个独立运行和增强采样获得具有稳健统计误差的基准质量结果的问题,这在 AMBER 的 GPU 加速功能中是可能的。

相似文献

1
Using AMBER18 for Relative Free Energy Calculations.使用 AMBER18 进行相对自由能计算。
J Chem Inf Model. 2019 Jul 22;59(7):3128-3135. doi: 10.1021/acs.jcim.9b00105. Epub 2019 Jun 20.
6
Advancing Drug Discovery through Enhanced Free Energy Calculations.通过增强自由能计算推进药物发现。
Acc Chem Res. 2017 Jul 18;50(7):1625-1632. doi: 10.1021/acs.accounts.7b00083. Epub 2017 Jul 5.

引用本文的文献

本文引用的文献

5
Predicting Binding Free Energies: Frontiers and Benchmarks.预测结合自由能:前沿和基准。
Annu Rev Biophys. 2017 May 22;46:531-558. doi: 10.1146/annurev-biophys-070816-033654. Epub 2017 Apr 7.
7
Relative Binding Free Energy Calculations Applied to Protein Homology Models.应用于蛋白质同源模型的相对结合自由能计算
J Chem Inf Model. 2016 Dec 27;56(12):2388-2400. doi: 10.1021/acs.jcim.6b00362. Epub 2016 Nov 18.
8
Application of Free Energy Perturbation for the Design of BACE1 Inhibitors.应用自由能微扰理论设计 BACE1 抑制剂。
J Chem Inf Model. 2016 Sep 26;56(9):1856-71. doi: 10.1021/acs.jcim.6b00220. Epub 2016 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验