Suppr超能文献

最佳地震反射率反演:数据驱动的损失正则化稀疏回归

Optimal Seismic Reflectivity Inversion: Data-driven -loss -regularization Sparse Regression.

作者信息

Li Fangyu, Xie Rui, Song Wen-Zhan, Chen Hui

机构信息

University of Georgia, Athens, GA 30602, USA.

Geomathematics Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu, China.

出版信息

IEEE Geosci Remote Sens Lett. 2019 May;16(5):806-810. doi: 10.1109/LGRS.2018.2881102. Epub 2018 Nov 30.

Abstract

Seismic reflectivity inversion is widely applied to improve the seismic resolution to obtain detailed underground understandings. Based on the convolution model, seismic inversion removes the wavelet effect by solving an optimization problem. Taking advantage of the sparsity property, the norm is commonly adopted in the regularization terms to overcome the noise/interference vulnerability observed in the -losses minimization. However, no one has provided a deterministic conclusion that ℓ norm regularization is the best choice for seismic reflectivity inversion. Instead of using an unproved fixed regularization norm, we propose an optimal seismic reflectivity inversion approach. Our method adaptively adopts a -loss- -regularization (i.e. regularization) for = 2, 0 < < 1 to estimate a more accurate and detailed reflectivity profile. In addition, we employ a fold cross-validation based approach to obtain the optimal damping factor λ to further improve the seismic inversion results. The letter starts with the introduction of non-convex constraint for seismic inversion, and the necessity of the norm regularization. Then the majorization-minimization and cross validation algorithms are briefly described. The performance of the proposed seismic inversion approach is evaluated through synthetic examples and a field example from the Bohai Bay Basin, China.

摘要

地震反射率反演被广泛应用于提高地震分辨率,以获得详细的地下信息。基于卷积模型,地震反演通过求解一个优化问题来消除子波效应。利用稀疏性特性,在正则化项中通常采用ℓ范数来克服在ℓ损失最小化中观察到的对噪声/干扰的敏感性。然而,没有人能提供一个确定性的结论,即ℓ范数正则化是地震反射率反演的最佳选择。我们提出了一种最优地震反射率反演方法,而不是使用未经证实的固定正则化范数。我们的方法针对p = 2、0 < q < 1自适应地采用ℓq损失-ℓp正则化(即ℓp正则化)来估计更准确、更详细的反射率剖面。此外,我们采用基于k折交叉验证的方法来获得最优阻尼因子λ,以进一步改善地震反演结果。本文首先介绍了地震反演的非凸约束以及ℓ范数正则化的必要性。然后简要描述了逐次逼近最小化和交叉验证算法。通过合成实例和来自中国渤海湾盆地的一个实际例子对所提出的地震反演方法的性能进行了评估。

相似文献

4
Image Super-Resolution via Adaptive Regularization and Sparse Representation.图像超分辨率技术:自适应正则化与稀疏表示。
IEEE Trans Neural Netw Learn Syst. 2016 Jul;27(7):1550-61. doi: 10.1109/TNNLS.2015.2512563. Epub 2016 Jan 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验