Suppr超能文献

使用半光滑牛顿算法求解器的稀疏脉冲地震反演

Sparse-spike seismic inversion with semismooth newton algorithm solver.

作者信息

Dai Ronghuo

机构信息

School of Mathematics and Information, China West Normal University, Nanchong, 637009, China.

出版信息

Sci Rep. 2024 Aug 28;14(1):19989. doi: 10.1038/s41598-024-71088-w.

Abstract

Seismic prospecting has been widely used in the exploration and development of underground geological resources, such as mineral products (e.x., coal, uranium deposit), oil and gas, groundwater, and so forth. Seismic impedance is a physical characteristic parameter of underground formation, which can be used in lithologic classification, rock characterization, stratigraphic correlation, and further mineral reservoir prediction, reserve estimation, and so forth. To estimate impedance from seismic data, one must perform reflectivity series inversion first. Under a simple exponential integration transformation, the reflectivity series can give the final estimated impedance. Sparse-spike seismic inversion is the most common method to obtain reflectivity series with high resolution. It adopts a sparse regularization to impose sparsity on reflectivity series. From sparse reflectivity series, the final estimated impedance has blocky features to make formation interfaces and geological edges precise, which is very important to accurately delineate the distribution range of mineral resources. The development of sparse-spike seismic inversion is still facing major challenges of fast optimization algorithms in real-life application, especially for massive seismic data in 3D case. Semismooth Newton algorithm (SNA), which is a second order mehtod and has super-linear, even quadratic convergence rate, is used to solve sparse-spike seismic inversion. The proposed algorithm has been compared with common used algorithms through a synthetic seismic trace and a 3D real seismic data volume. The results show that the proposed algorithm has faster convergence rate and fewer computation time. It provides a new effective algorithm to solve sparse-spike seismic inversion.

摘要

地震勘探已广泛应用于地下地质资源的勘探与开发,如矿产(例如煤炭、铀矿床)、石油和天然气、地下水等。波阻抗是地下地层的一个物理特征参数,可用于岩性分类、岩石特征描述、地层对比,以及进一步的矿产储层预测、储量估算等。要从地震数据估算波阻抗,必须首先进行反射系数序列反演。在简单指数积分变换下,反射系数序列可给出最终估算的波阻抗。稀疏脉冲地震反演是获得高分辨率反射系数序列的最常用方法。它采用稀疏正则化使反射系数序列具有稀疏性。从稀疏反射系数序列得到的最终估算波阻抗具有块状特征,能使地层界面和地质边界更加精确,这对于准确圈定矿产资源的分布范围非常重要。在实际应用中,尤其是对于三维情况下的海量地震数据,稀疏脉冲地震反演的发展仍面临快速优化算法的重大挑战。半光滑牛顿算法(SNA)是一种二阶方法,具有超线性甚至二次收敛速度,用于求解稀疏脉冲地震反演问题。通过一条合成地震道和一个三维实际地震数据体,将所提出的算法与常用算法进行了比较。结果表明,所提出的算法具有更快的收敛速度和更少的计算时间。它为解决稀疏脉冲地震反演提供了一种新的有效算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65e0/11358434/991bc2a906df/41598_2024_71088_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验