Suppr超能文献

将精细尺度的环境异质性纳入大范围模型。

Incorporating fine-scale environmental heterogeneity into broad-extent models.

作者信息

Graham Laura J, Spake Rebecca, Gillings Simon, Watts Kevin, Eigenbrod Felix

机构信息

Geography and Environment University of Southampton Southampton UK.

British Trust for Ornithology Thetford UK.

出版信息

Methods Ecol Evol. 2019 Jun;10(6):767-778. doi: 10.1111/2041-210X.13177. Epub 2019 Apr 8.

Abstract

A key aim of ecology is to understand the drivers of ecological patterns, so that we can accurately predict the effects of global environmental change. However, in many cases, predictors are measured at a finer resolution than the ecological response. We therefore require data aggregation methods that avoid loss of information on fine-grain heterogeneity.We present a data aggregation method that, unlike current approaches, reduces the loss of information on fine-grain spatial structure in environmental heterogeneity for use with coarse-grain ecological datasets. Our method contains three steps: (a) define analysis scales (predictor grain, response grain, scale-of-effect); (b) use a moving window to calculate a measure of variability in environment (predictor grain) at the process-relevant scale (scale-of-effect); and (c) aggregate the moving window calculations to the coarsest resolution (response grain). We show the theoretical basis for our method using simulated landscapes and the practical utility with a case study. Our method is available as the grainchanger r package.The simulations show that information about spatial structure is captured that would have been lost using a direct aggregation approach, and that our method is particularly useful in landscapes with spatial autocorrelation in the environmental predictor variable (e.g. fragmented landscapes) and when the scale-of-effect is small relative to the response grain. We use our data aggregation method to find the appropriate scale-of-effect of land cover diversity on Eurasian jay abundance in the UK. We then model the interactive effect of land cover heterogeneity and temperature on abundance. Our method enables us quantify this interaction despite the different scales at which these factors influence abundance.Our data aggregation method allows us to integrate variables that act at varying scales into one model with limited loss of information, which has wide applicability for spatial analyses beyond the specific ecological context considered here. Key ecological applications include being able to estimate the interactive effect of drivers that vary at different scales (such as climate and land cover), and to systematically examine the scale dependence of the effects of environmental heterogeneity in combination with the effects of climate change on biodiversity.

摘要

生态学的一个关键目标是了解生态模式的驱动因素,以便我们能够准确预测全球环境变化的影响。然而,在许多情况下,预测变量的测量分辨率比生态响应的分辨率更精细。因此,我们需要数据聚合方法,以避免丢失关于细粒度异质性的信息。我们提出了一种数据聚合方法,与当前方法不同,该方法减少了环境异质性中细粒度空间结构信息的丢失,以用于粗粒度生态数据集。我们的方法包括三个步骤:(a)定义分析尺度(预测变量粒度、响应粒度、效应尺度);(b)使用移动窗口计算过程相关尺度(效应尺度)上环境(预测变量粒度)的变异性度量;(c)将移动窗口计算聚合到最粗分辨率(响应粒度)。我们使用模拟景观展示了我们方法的理论基础,并通过一个案例研究展示了其实用性。我们的方法可作为grainchanger R包使用。模拟表明,使用直接聚合方法会丢失的空间结构信息被捕获,并且我们的方法在环境预测变量存在空间自相关的景观中(例如破碎景观)以及当效应尺度相对于响应粒度较小时特别有用。我们使用我们的数据聚合方法来确定英国欧亚松鸦数量上土地覆盖多样性的适当效应尺度。然后,我们对土地覆盖异质性和温度对数量的交互作用进行建模。我们的方法使我们能够量化这种交互作用,尽管这些因素影响数量的尺度不同。我们的数据聚合方法允许我们将在不同尺度上起作用的变量整合到一个信息损失有限的模型中,这对于超出此处考虑的特定生态背景的空间分析具有广泛的适用性。关键的生态应用包括能够估计在不同尺度上变化的驱动因素(如气候和土地覆盖)的交互作用,并系统地研究环境异质性影响的尺度依赖性以及气候变化对生物多样性的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5285/6582547/a6f663f08e40/MEE3-10-767-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验