Suppr超能文献

具有封装锗纳米颗粒的三维双壁超薄石墨管导电支架作为锂离子电池的高面积容量和循环稳定阳极

Three-Dimensional Double-Walled Ultrathin Graphite Tube Conductive Scaffold with Encapsulated Germanium Nanoparticles as a High-Areal-Capacity and Cycle-Stable Anode for Lithium-Ion Batteries.

作者信息

Mo Runwei, Lei Zhengyu, Rooney David, Sun Kening

机构信息

Academy of Fundamental and Interdisciplinary Sciences , Harbin Institute of Technology , Harbin 150001 , China.

School of Chemistry and Chemical Engineering , Queen's University Belfast , Belfast BT9 5AG , Northern Ireland.

出版信息

ACS Nano. 2019 Jul 23;13(7):7536-7544. doi: 10.1021/acsnano.8b09027. Epub 2019 Jun 27.

Abstract

The demand for lithium-ion batteries with both high power and high-energy density has attracted widespread attention as energy-storage devices for the increasing demand of consumer electronics, electric vehicles, and grid-scale storage. However, the fabrication of an advanced electrode architecture with high areal capacity, excellent cycling stability, and superior rate performance remains a long-term challenge in the development of advanced electrochemical energy-storage devices. Herein, we design an effective and general strategy to spontaneously encapsulate Ge nanoparticles into a three-dimensional double hydrophilic N-doped ultrathin graphite/void/hydrophobic ultrathin graphite tube network (Ge@3D-DHGT) with control over the position for large specific capacity (1338 mA h g), high rate performance (752 mA h g at 40 C), and superior cycling stability (up to 1000 cycles). Toward the practical application, the as-prepared Ge@3D-DHGT electrode showed a large areal capacity (10 mA h cm under 8 mA cm), which provides a highly promising anode with both high capacity and high rate performance. Importantly, this work provides an approach to fabricate high-areal-capacity anodes with long cycling stability and rapid charge-discharge properties with practical applications in advanced rechargeable batteries.

摘要

随着消费电子产品、电动汽车和电网规模储能需求的不断增加,对兼具高功率和高能量密度的锂离子电池作为储能装置的需求引起了广泛关注。然而,在先进电化学储能装置的开发中,制造具有高面积容量、优异循环稳定性和卓越倍率性能的先进电极结构仍然是一个长期挑战。在此,我们设计了一种有效且通用的策略,将锗纳米颗粒自发封装到三维双亲性氮掺杂超薄石墨/空隙/疏水性超薄石墨管网络(Ge@3D-DHGT)中,可控制其位置,实现大比容量(1338 mA h g)、高倍率性能(40 C时为752 mA h g)和优异的循环稳定性(高达1000次循环)。对于实际应用,所制备的Ge@3D-DHGT电极显示出大的面积容量(8 mA cm下为10 mA h cm),这为兼具高容量和高倍率性能的阳极提供了极具潜力的方案。重要的是,这项工作提供了一种制造具有长循环稳定性和快速充放电性能的高面积容量阳极的方法,在先进的可充电电池中具有实际应用价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验