Suppr超能文献

使用薄膜复合膜进行燃烧后碳捕集。

Postcombustion Carbon Capture Using Thin-Film Composite Membranes.

机构信息

Department of Chemical Engineering , The University of Melbourne , Parkville , VIC 3010 , Australia.

出版信息

Acc Chem Res. 2019 Jul 16;52(7):1905-1914. doi: 10.1021/acs.accounts.9b00111. Epub 2019 Jun 27.

Abstract

Climate change due to anthropogenic carbon dioxide emissions (e.g., combustion of fossil fuels) represents one of the most profound environmental disasters of this century. Equipping power plants with carbon capture and storage (CCS) technology has the potential to reduce current worldwide CO emissions. However, existing CCS schemes (i.e., amine scrubbing) are highly energy-intensive. The urgent abatement of CO emissions relies on the development of new, efficient technologies to capture CO from existing power plants. Membrane-based CO separation is an attractive technology that meets many of the requirements for energy-efficient industrial carbon capture. Within this domain, thin-film composite (TFC) membranes are particularly attractive, providing high gas permeance in comparison with conventional thicker (∼50 μm) dense membranes. TFC membranes are usually composed of three layers: (1) a bottom porous support layer; (2) a highly permeable intermediate gutter layer; and (3) a thin (<1 μm) species-selective top layer. A key challenge in the development of TFC membranes has been to simultaneously maximize the transmembrane gas permeance of the assembled membrane (by minimizing the gas resistance of each layer) while maintaining high gas-specific selectivity. In this Account, we provide an overview of our recent development of high-performance TFC membrane materials as well as insights into the unique fabrication strategies employed for the selective layer and gutter layer. Optimization of each layer of the membrane assembly individually results in significant improvements in overall membrane performance. First, incorporating nanosized fillers into the selective layer (poly(ethylene glycol)-based polymers) and reducing its thickness (to ca. 50 nm) through continuous assembly of polymers technology yields major improvements in CO permeance without loss of selectivity. Second, we focus on optimization of the middle gutter layer of TFC membranes. The development of enhanced gutter layers employing two- and three-dimensional metal-organic framework materials leads to considerable improvements in both CO permeance and selectivity compared with traditional poly(dimethylsiloxane) materials. Third, incorporation of a porous, flexible support layer culminates in a mechanically robust high-performance TFC membrane design that exhibits unprecedented CO separation performance and holds significant potential for industrial CO capture. Alternative strategies are also emerging, whereby the selective layer and gutter layer may be combined for enhanced membrane efficiency. This Account highlights the CO capture performance, current challenges, and future research directions in designing high-performance TFC membranes.

摘要

人为二氧化碳排放(如化石燃料燃烧)导致的气候变化是本世纪最严重的环境灾难之一。为发电厂配备碳捕集与封存(CCS)技术有潜力减少当前全球 CO 排放。然而,现有的 CCS 方案(即胺洗涤)是高度能源密集型的。要减少 CO 排放,就迫切需要开发新的、高效的技术,从现有电厂中捕集 CO。基于膜的 CO 分离是一种有吸引力的技术,它满足了高效工业碳捕集的许多要求。在这个领域中,薄膜复合(TFC)膜特别有吸引力,与传统的较厚(约 50μm)致密膜相比,它们具有更高的气体透过率。TFC 膜通常由三层组成:(1)底部多孔支撑层;(2)高度可渗透的中间导槽层;和(3)薄(<1μm)的选择性顶层。TFC 膜开发的一个关键挑战是在组装膜的气体透过率最大化的同时(通过最小化每层的气体阻力),同时保持高气特异性选择性。在本报告中,我们概述了我们最近在高性能 TFC 膜材料方面的开发情况,并深入了解了用于选择性层和导槽层的独特制造策略。对膜组件的每一层进行优化,都能显著提高整体膜性能。首先,在基于聚(乙二醇)的聚合物的选择性层中加入纳米尺寸的填料,并通过连续的聚合物技术将其厚度(降至约 50nm)降低,这会大大提高 CO 透过率而不会损失选择性。其次,我们专注于优化 TFC 膜的中间导槽层。采用二维和三维金属有机骨架材料开发增强型导槽层,与传统的聚二甲基硅氧烷材料相比,这会导致 CO 透过率和选择性都有显著提高。第三,加入多孔、柔性支撑层,最终设计出机械性能强的高性能 TFC 膜,这种膜具有前所未有的 CO 分离性能,在工业 CO 捕集中具有巨大的应用潜力。替代策略也在出现,即选择性层和导槽层可以组合起来,以提高膜效率。本报告重点介绍了在设计高性能 TFC 膜方面的 CO 捕集性能、当前挑战和未来研究方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验