Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado 80309, United States.
Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States.
Acc Chem Res. 2016 Apr 19;49(4):724-32. doi: 10.1021/acs.accounts.5b00547. Epub 2016 Apr 5.
The recycling or sequestration of carbon dioxide (CO2) from the waste gas of fossil-fuel power plants is widely acknowledged as one of the most realistic strategies for delaying or avoiding the severest environmental, economic, political, and social consequences that will result from global climate change and ocean acidification. For context, in 2013 coal and natural gas power plants accounted for roughly 31% of total U.S. CO2 emissions. Recycling or sequestering this CO2 would reduce U.S. emissions by ca. 1800 million metric tons-easily meeting the U.S.'s currently stated CO2 reduction targets of ca. 17% relative to 2005 levels by 2020. This situation is similar for many developed and developing nations, many of which officially target a 20% reduction relative to 1990 baseline levels by 2020. To make CO2 recycling or sequestration processes technologically and economically viable, the CO2 must first be separated from the rest of the waste gas mixture-which is comprised mostly of nitrogen gas and water (ca. 85%). Of the many potential separation technologies available, membrane technology is particularly attractive due to its low energy operating cost, low maintenance, smaller equipment footprint, and relatively facile retrofit integration with existing power plant designs. From a techno-economic standpoint, the separation of CO2 from flue gas requires membranes that can process extremely high amounts of CO2 over a short time period, a property defined as the membrane "permeance". In contrast, the membrane's CO2/N2 selectivity has only a minor effect on the overall cost of some separation processes once a threshold permeability selectivity of ca. 20 is reached. Given the above criteria, the critical properties when developing membrane materials for postcombustion CO2 separation are CO2 permeability (i.e., the rate of CO2 transport normalized to the material thickness), a reasonable CO2/N2 selectivity (≥20), and the ability to be processed into defect-free thin-films (ca. 100-nm-thick active layer). Traditional polymeric membrane materials are limited by a trade-off between permeability and selectivity empirically described by the "Robeson upper bound"-placing the desired membrane properties beyond reach. Therefore, the investigation of advanced and composite materials that can overcome the limitations of traditional polymeric materials is the focus of significant academic and industrial research. In particular, there has been substantial work on ionic-liquid (IL)-based materials due to their gas transport properties. This review provides an overview of our collaborative work on developing poly(ionic liquid)/ionic liquid (PIL/IL) ion-gel membrane technology. We detail developmental work on the preparation of PIL/IL composites and describe how this chemical technology was adapted to allow the roll-to-roll processing and preparation of membranes with defect-free active layers ca. 100 nm thick, CO2 permeances of over 6000 GPU, and CO2/N2 selectivity of ≥20-properties with the potential to reduce the cost of CO2 removal from coal-fired power plant flue gas to ca. $15 per ton of CO2 captured. Additionally, we examine the materials developments that have produced advanced PIL/IL composite membranes. These advancements include cross-linked PIL/IL blends, step-growth PIL/IL networks with facilitated transport groups, and PIL/IL composites with microporous additives for CO2/CH4 separations.
从化石燃料发电厂废气中回收或隔离二氧化碳(CO2)被广泛认为是延迟或避免全球气候变化和海洋酸化所带来的最严重的环境、经济、政治和社会后果的最现实策略之一。背景信息:2013 年,煤炭和天然气发电厂约占美国 CO2 排放总量的 31%。回收或隔离这些 CO2 将使美国的排放量减少约 18 亿吨——这很容易达到美国目前宣布的到 2020 年相对于 2005 年减少约 17%的 CO2 减排目标。对于许多发达国家和发展中国家来说,情况也是如此,其中许多国家的官方目标是到 2020 年将 CO2 排放量相对于 1990 年的基准水平减少 20%。为了使 CO2 回收或隔离过程在技术和经济上可行,CO2 必须首先从废气混合物中分离出来——废气混合物主要由氮气和水(约 85%)组成。在许多潜在的分离技术中,膜技术因其低能耗运行成本、低维护、较小的设备占地面积以及与现有电厂设计相对容易的改造集成而特别有吸引力。从技术经济的角度来看,从烟道气中分离 CO2 需要能够在短时间内处理大量 CO2 的膜,这一特性定义为膜的“渗透性”。相比之下,一旦达到约 20 的阈值渗透选择性,膜的 CO2/N2 选择性对某些分离过程的总成本只有很小的影响。鉴于上述标准,用于燃烧后 CO2 分离的膜材料开发的关键特性是 CO2 渗透性(即,归一化到材料厚度的 CO2 传输速率)、合理的 CO2/N2 选择性(≥20)以及能够加工成无缺陷的薄膜(约 100nm 厚的活性层)的能力。传统的聚合物膜材料受到渗透性和选择性之间的权衡限制,这可以通过经验描述的“Robeson 上限”来表示——将所需的膜性能置于无法达到的范围之外。因此,研究能够克服传统聚合物材料局限性的先进和复合材料是当前学术界和工业界研究的重点。特别是,由于其气体传输特性,离子液体(IL)基材料受到了大量关注。本文综述了我们在开发聚(离子液体)/离子液体(PIL/IL)离子凝胶膜技术方面的合作工作。我们详细介绍了 PIL/IL 复合材料的制备工作,并描述了如何调整这种化学技术,以允许使用缺陷层厚度约为 100nm 的无缺陷活性层进行卷对卷加工和制备,CO2 渗透率超过 6000GPU,CO2/N2 选择性≥20——这些特性有可能将从燃煤电厂烟道气中去除 CO2 的成本降低到约 15 美元/吨 CO2。此外,我们还研究了能够产生先进 PIL/IL 复合膜的材料开发。这些进展包括交联 PIL/IL 共混物、具有促进传输基团的逐步增长 PIL/IL 网络以及用于 CO2/CH4 分离的具有微孔添加剂的 PIL/IL 复合材料。