Suppr超能文献

基于贝叶斯概率矩阵分解模型的微小RNA与疾病潜在关联预测

Prediction of Potential Associations Between MicroRNA and Disease Based on Bayesian Probabilistic Matrix Factorization Model.

作者信息

Mao Guo, Wang Shu-Lin, Zhang Wei

机构信息

College of Computer Science and Electronics Engineering, Hunan University, Changsha, China.

出版信息

J Comput Biol. 2019 Sep;26(9):1030-1039. doi: 10.1089/cmb.2019.0012. Epub 2019 Jun 26.

Abstract

The association between microRNAs (miRNAs) and diseases is significant to understand the development and progression of many human diseases. Given the cost and complexity of biological experiments, the computational method for predicting the potential association between miRNAs and disease will be an effective complement. In this article, we have developed a model (microRNA and disease based on Bayesian probabilistic matrix factorization, MDBPMF) based on a fully Bayesian treatment of the probabilistic matrix factorization to find potential associations between miRNAs and diseases by using the HMDDv2.0 database, which contains proven miRNA-disease associations. We show that Bayesian probabilistic matrix factorization models can be efficiently trained using Markov chain Monte Carlo methods by applying them to the HMDDv2.0 database. MDBPMF achieves reliable prediction with an average area under receiver operating characteristic curve of 0.8755 for eight complex diseases based on fivefold cross-validation, which indeed outperforms the state-of-the-art method. In addition, a case study of lung cancer further verifies the utility of our method.

摘要

微小RNA(miRNA)与疾病之间的关联对于理解多种人类疾病的发展和进程具有重要意义。鉴于生物实验的成本和复杂性,预测miRNA与疾病潜在关联的计算方法将是一种有效的补充。在本文中,我们基于概率矩阵分解的全贝叶斯处理方法开发了一个模型(基于贝叶斯概率矩阵分解的微小RNA与疾病模型,MDBPMF),通过使用包含已证实的miRNA-疾病关联的HMDDv2.0数据库来寻找miRNA与疾病之间的潜在关联。我们表明,通过将贝叶斯概率矩阵分解模型应用于HMDDv2.0数据库,可以使用马尔可夫链蒙特卡罗方法对其进行有效训练。基于五折交叉验证,MDBPMF对八种复杂疾病的预测具有可靠的性能,受试者工作特征曲线下的平均面积为0.8755,这确实优于当前的先进方法。此外,肺癌的案例研究进一步验证了我们方法的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验