Suppr超能文献

基于多元路径融合图嵌入模型预测 miRNA-疾病关联

Predicting MiRNA-disease associations by multiple meta-paths fusion graph embedding model.

机构信息

Engineering Research Center of Mine Digitalization of Ministry of Education, China University of Mining and Technology, Xuzhou, China.

School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China.

出版信息

BMC Bioinformatics. 2020 Oct 21;21(1):470. doi: 10.1186/s12859-020-03765-2.

Abstract

BACKGROUND

Many studies prove that miRNAs have significant roles in diagnosing and treating complex human diseases. However, conventional biological experiments are too costly and time-consuming to identify unconfirmed miRNA-disease associations. Thus, computational models predicting unidentified miRNA-disease pairs in an efficient way are becoming promising research topics. Although existing methods have performed well to reveal unidentified miRNA-disease associations, more work is still needed to improve prediction performance.

RESULTS

In this work, we present a novel multiple meta-paths fusion graph embedding model to predict unidentified miRNA-disease associations (M2GMDA). Our method takes full advantage of the complex structure and rich semantic information of miRNA-disease interactions in a self-learning way. First, a miRNA-disease heterogeneous network was derived from verified miRNA-disease pairs, miRNA similarity and disease similarity. All meta-path instances connecting miRNAs with diseases were extracted to describe intrinsic information about miRNA-disease interactions. Then, we developed a graph embedding model to predict miRNA-disease associations. The model is composed of linear transformations of miRNAs and diseases, the means encoder of a single meta-path instance, the attention-aware encoder of meta-path type and attention-aware multiple meta-path fusion. We innovatively integrated meta-path instances, meta-path based neighbours, intermediate nodes in meta-paths and more information to strengthen the prediction in our model. In particular, distinct contributions of different meta-path instances and meta-path types were combined with attention mechanisms. The data sets and source code that support the findings of this study are available at https://github.com/dangdangzhang/M2GMDA .

CONCLUSIONS

M2GMDA achieved AUCs of 0.9323 and 0.9182 in global leave-one-out cross validation and fivefold cross validation with HDMM V2.0. The results showed that our method outperforms other prediction methods. Three kinds of case studies with lung neoplasms, breast neoplasms, prostate neoplasms, pancreatic neoplasms, lymphoma and colorectal neoplasms demonstrated that 47, 50, 49, 48, 50 and 50 out of the top 50 candidate miRNAs predicted by M2GMDA were validated by biological experiments. Therefore, it further confirms the prediction performance of our method.

摘要

背景

许多研究证明 miRNAs 在诊断和治疗复杂人类疾病方面具有重要作用。然而,传统的生物学实验过于昂贵和耗时,无法识别未经证实的 miRNA-疾病关联。因此,以高效的方式预测未识别的 miRNA-疾病对的计算模型成为有前途的研究课题。尽管现有方法在揭示未识别的 miRNA-疾病关联方面表现出色,但仍需要更多的工作来提高预测性能。

结果

在这项工作中,我们提出了一种新的多元路径融合图嵌入模型来预测未识别的 miRNA-疾病关联(M2GMDA)。我们的方法充分利用 miRNA-疾病相互作用的复杂结构和丰富的语义信息,以自学习的方式进行。首先,从已验证的 miRNA-疾病对、miRNA 相似性和疾病相似性中导出 miRNA-疾病异质网络。提取连接 miRNA 和疾病的所有元路径实例,以描述 miRNA-疾病相互作用的内在信息。然后,我们开发了一个图嵌入模型来预测 miRNA-疾病关联。该模型由 miRNA 和疾病的线性变换、单个元路径实例的均值编码器、元路径类型的注意感知编码器和注意感知多元路径融合组成。我们创新性地整合了元路径实例、基于元路径的邻居、元路径中的中间节点和更多信息,以加强我们模型中的预测。特别是,不同元路径实例和元路径类型的不同贡献与注意力机制相结合。支持本研究发现的数据集和源代码可在 https://github.com/dangdangzhang/M2GMDA 上获得。

结论

M2GMDA 在全球留一交叉验证和五折交叉验证中分别达到了 0.9323 和 0.9182 的 AUCs,使用了 HDMM V2.0。结果表明,我们的方法优于其他预测方法。三种病例研究,包括肺癌、乳腺癌、前列腺癌、胰腺癌、淋巴瘤和结直肠癌,表明 M2GMDA 预测的前 50 个候选 miRNA 中,有 47、50、49、48、50 和 50 个被生物学实验验证。因此,进一步证实了我们方法的预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64da/7579830/bd7985ebe632/12859_2020_3765_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验