Suppr超能文献

具有增强光催化性能的SnO@ZnO异质结光催化剂的第一性原理计算与实验研究

First-principles calculations and experimental investigation on SnO@ZnO heterojunction photocatalyst with enhanced photocatalytic performance.

作者信息

Chen Sifan, Liu Fenning, Xu Manzhang, Yan Junfeng, Zhang Fuchun, Zhao Wu, Zhang Zhiyong, Deng Zhouhu, Yun Jiangni, Chen Ruiyong, Liu Chunli

机构信息

School of Information Science and Technology, Northwest University, Xi'an 710127, PR China.

School of Information Science and Technology, Northwest University, Xi'an 710127, PR China.

出版信息

J Colloid Interface Sci. 2019 Oct 1;553:613-621. doi: 10.1016/j.jcis.2019.06.053. Epub 2019 Jun 17.

Abstract

In this study, branch-like SnO@ZnO heterojunction photocatalyst was successfully fabricated via a simple two-step hydrothermal process. The optical and electronic properties were characterized in detail and the results indicated that SnO@ZnO nanocomposites (TZNCs) exhibited superior photocatalytic performance under visible light irradiation as compared to pure SnO and ZnO. The excellent photocatalytic performance of TZNCs can be ascribed to the heterojunction structure between ZnO and SnO which depresses the recombination of photogenerated electron-hole pairs. In addition, the branch-like morphology can provide large specific surface. Moreover, the density functional theory (DFT) computation on the Fermi level results confirmed that heterojunction structure between ZnO and SnO is more favor of the transfer of photogenerated eletrons from ZnO to SnO, effectively improving separation of photogenerated electron-hole pairs. Noteworthy, this work would pave the route for the two semiconductor materials with a big work function difference which would lead to the high contact potential difference, surely contributing to improving the performance of photocatalysts.

摘要

在本研究中,通过简单的两步水热法成功制备了树枝状的SnO@ZnO异质结光催化剂。详细表征了其光学和电子性质,结果表明,与纯SnO和ZnO相比,SnO@ZnO纳米复合材料(TZNCs)在可见光照射下表现出优异的光催化性能。TZNCs优异的光催化性能可归因于ZnO和SnO之间的异质结结构,该结构抑制了光生电子-空穴对的复合。此外,树枝状形态可提供较大的比表面积。而且,基于费米能级结果的密度泛函理论(DFT)计算证实,ZnO和SnO之间的异质结结构更有利于光生电子从ZnO转移到SnO,有效改善了光生电子-空穴对的分离。值得注意的是,这项工作将为具有大的功函数差从而导致高接触电势差的两种半导体材料铺平道路,肯定有助于提高光催化剂的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验