Suppr超能文献

纳米结构的 SnO2-ZnO 异质结光催化剂表现出增强的光催化活性,可用于有机染料的降解。

Nanostructured SnO2-ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes.

机构信息

University of Bordeaux, Institut des Sciences Moléculaires, UMR 5255 CNRS, 351 Cours de la Libération, F-33405 Talence Cedex, France.

出版信息

Inorg Chem. 2012 Jul 16;51(14):7764-73. doi: 10.1021/ic300794j. Epub 2012 Jun 26.

Abstract

Nanoporous SnO(2)-ZnO heterojunction nanocatalyst was prepared by a straightforward two-step procedure involving, first, the synthesis of nanosized SnO(2) particles by homogeneous precipitation combined with a hydrothermal treatment and, second, the reaction of the as-prepared SnO(2) particles with zinc acetate followed by calcination at 500 °C. The resulting nanocatalysts were characterized by X-ray diffraction (XRD), FTIR, Raman, X-ray photoelectron spectroscopy (XPS), nitrogen adsorption-desorption analyses, transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectroscopy. The SnO(2)-ZnO photocatalyst was made of a mesoporous network of aggregated wurtzite ZnO and cassiterite SnO(2) nanocrystallites, the size of which was estimated to be 27 and 4.5 nm, respectively, after calcination. According to UV-visible diffuse reflectance spectroscopy, the evident energy band gap value of the SnO(2)-ZnO photocatalyst was estimated to be 3.23 eV to be compared with those of pure SnO(2), that is, 3.7 eV, and ZnO, that is, 3.2 eV, analogues. The energy band diagram of the SnO(2)-ZnO heterostructure was directly determined by combining XPS and the energy band gap values. The valence band and conduction band offsets were calculated to be 0.70 ± 0.05 eV and 0.20 ± 0.05 eV, respectively, which revealed a type-II band alignment. Moreover, the heterostructure SnO(2)-ZnO photocatalyst showed much higher photocatalytic activities for the degradation of methylene blue than those of individual SnO(2) and ZnO nanomaterials. This behavior was rationalized in terms of better charge separation and the suppression of charge recombination in the SnO(2)-ZnO photocatalyst because of the energy difference between the conduction band edges of SnO(2) and ZnO as evidenced by the band alignment determination. Finally, this mesoporous SnO(2)-ZnO heterojunction nanocatalyst was stable and could be easily recycled several times opening new avenues for potential industrial applications.

摘要

纳米多孔 SnO(2)-ZnO 异质结纳米催化剂是通过一种简单的两步法制备的,包括首先通过均匀沉淀结合水热处理合成纳米 SnO(2)颗粒,然后将制备的 SnO(2)颗粒与醋酸锌反应,最后在 500°C 下煅烧。所得纳米催化剂通过 X 射线衍射 (XRD)、傅里叶变换红外光谱 (FTIR)、拉曼光谱、X 射线光电子能谱 (XPS)、氮气吸附-脱附分析、透射电子显微镜 (TEM) 和紫外-可见漫反射光谱进行了表征。SnO(2)-ZnO 光催化剂由聚集的纤锌矿 ZnO 和金红石 SnO(2)纳米晶的介孔网络组成,煅烧后其尺寸分别估计为 27nm 和 4.5nm。根据紫外-可见漫反射光谱,SnO(2)-ZnO 光催化剂的明显能带隙值估计为 3.23eV,与纯 SnO(2)的 3.7eV 和 ZnO 的 3.2eV 相比有所降低。SnO(2)-ZnO 异质结构的能带图是通过结合 XPS 和能带隙值直接确定的。价带和导带偏移量分别计算为 0.70±0.05eV 和 0.20±0.05eV,表明存在 II 型能带排列。此外,SnO(2)-ZnO 光催化剂对亚甲基蓝的光催化降解活性明显高于单独的 SnO(2)和 ZnO 纳米材料。这种行为可以通过能带排列的确定来解释,因为 SnO(2)和 ZnO 的导带边缘之间存在能量差,导致 SnO(2)-ZnO 光催化剂中电荷分离更好,抑制了电荷复合。最后,这种介孔 SnO(2)-ZnO 异质结纳米催化剂稳定且易于多次回收,为潜在的工业应用开辟了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验