Suppr超能文献

Cdc48 ATPase 复合物通过展开泛素启动底物加工。

Substrate processing by the Cdc48 ATPase complex is initiated by ubiquitin unfolding.

机构信息

Department of Cell Biology, Harvard Medical School, and Howard Hughes Medical Institute, 240 Longwood Avenue, Boston, MA 02115, USA.

Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.

出版信息

Science. 2019 Aug 2;365(6452). doi: 10.1126/science.aax1033. Epub 2019 Jun 27.

Abstract

The Cdc48 adenosine triphosphatase (ATPase) (p97 or valosin-containing protein in mammals) and its cofactor Ufd1/Npl4 extract polyubiquitinated proteins from membranes or macromolecular complexes for subsequent degradation by the proteasome. How Cdc48 processes its diverse and often well-folded substrates is unclear. Here, we report cryo-electron microscopy structures of the Cdc48 ATPase in complex with Ufd1/Npl4 and polyubiquitinated substrate. The structures show that the Cdc48 complex initiates substrate processing by unfolding a ubiquitin molecule. The unfolded ubiquitin molecule binds to Npl4 and projects its N-terminal segment through both hexameric ATPase rings. Pore loops of the second ring form a staircase that acts as a conveyer belt to move the polypeptide through the central pore. Inducing the unfolding of ubiquitin allows the Cdc48 ATPase complex to process a broad range of substrates.

摘要

CDC48 腺苷三磷酸酶(ATPase)(哺乳动物中的 valosin 包含蛋白或 p97)及其辅助因子 Ufd1/Npl4 从膜或大分子复合物中提取多聚泛素化蛋白,随后由蛋白酶体降解。CDC48 如何处理其多样化且通常折叠良好的底物尚不清楚。在这里,我们报道了 CDC48 ATPase 与 Ufd1/Npl4 和多聚泛素化底物复合物的低温电子显微镜结构。这些结构表明,CDC48 复合物通过展开一个泛素分子来启动底物加工。展开的泛素分子与 Npl4 结合,并将其 N 端片段通过六聚体 ATP 酶环投射出来。第二个环的孔环形成一个阶梯,充当输送带,将多肽穿过中央孔。诱导泛素展开使 CDC48 ATP 酶复合物能够处理广泛的底物。

相似文献

1
Substrate processing by the Cdc48 ATPase complex is initiated by ubiquitin unfolding.
Science. 2019 Aug 2;365(6452). doi: 10.1126/science.aax1033. Epub 2019 Jun 27.
2
Translocation of polyubiquitinated protein substrates by the hexameric Cdc48 ATPase.
Mol Cell. 2022 Feb 3;82(3):570-584.e8. doi: 10.1016/j.molcel.2021.11.033. Epub 2021 Dec 23.
3
Structure of the Cdc48 ATPase with its ubiquitin-binding cofactor Ufd1-Npl4.
Nat Struct Mol Biol. 2018 Jul;25(7):616-622. doi: 10.1038/s41594-018-0085-x. Epub 2018 Jul 2.
4
The Ufd1 cofactor determines the linkage specificity of polyubiquitin chain engagement by the AAA+ ATPase Cdc48.
Mol Cell. 2023 Mar 2;83(5):759-769.e7. doi: 10.1016/j.molcel.2023.01.016. Epub 2023 Feb 2.
5
Preparation of site-specifically fluorophore-labeled polyubiquitin chains for FRET studies of Cdc48 substrate processing.
STAR Protoc. 2023 Dec 15;4(4):102659. doi: 10.1016/j.xpro.2023.102659. Epub 2023 Oct 26.
6
Molecular Mechanism of Substrate Processing by the Cdc48 ATPase Complex.
Cell. 2017 May 4;169(4):722-735.e9. doi: 10.1016/j.cell.2017.04.020.
8
Bidirectional substrate shuttling between the 26S proteasome and the Cdc48 ATPase promotes protein degradation.
Mol Cell. 2024 Apr 4;84(7):1290-1303.e7. doi: 10.1016/j.molcel.2024.01.029. Epub 2024 Feb 23.
9
SUMO enhances unfolding of SUMO-polyubiquitin-modified substrates by the Ufd1/Npl4/Cdc48 complex.
Proc Natl Acad Sci U S A. 2023 Jan 3;120(1):e2213703120. doi: 10.1073/pnas.2213703120. Epub 2022 Dec 27.
10
A conserved protein with AN1 zinc finger and ubiquitin-like domains modulates Cdc48 (p97) function in the ubiquitin-proteasome pathway.
J Biol Chem. 2013 Nov 22;288(47):33682-33696. doi: 10.1074/jbc.M113.521088. Epub 2013 Oct 11.

引用本文的文献

1
Structural basis of VCP-VCPIP1-p47 ternary complex in Golgi maintenance.
Nat Commun. 2025 Aug 28;16(1):8025. doi: 10.1038/s41467-025-63161-3.
2
The p97 ATPase and its adaptor UBXD8 maintain peroxisome pools by preventing pexophagy.
J Cell Biol. 2025 Sep 1;224(9). doi: 10.1083/jcb.202409024. Epub 2025 Jul 29.
4
SNARE disassembly requires Sec18/NSF side loading.
Nat Struct Mol Biol. 2025 Jul 2. doi: 10.1038/s41594-025-01590-w.
5
Mechanism of nascent chain removal by the ribosome-associated quality control complex.
Nat Commun. 2025 Jul 1;16(1):5792. doi: 10.1038/s41467-025-61235-w.
7
C1QL1 inhibits breast cancer through the HSP90α/VCP-ERS/UPR axis.
Exp Mol Med. 2025 Jun;57(6):1308-1323. doi: 10.1038/s12276-025-01486-1. Epub 2025 Jun 30.
8
Impact of proteostasis workload on sensitivity to proteasome inhibitors in multiple myeloma.
Clin Exp Med. 2025 May 26;25(1):176. doi: 10.1007/s10238-025-01713-z.
9
Molecular Tweezers Block the Functional Pore of a Protein Machine.
J Am Chem Soc. 2025 May 21;147(20):16836-16849. doi: 10.1021/jacs.4c15288. Epub 2025 May 12.
10
p97/VCP is required for piecemeal autophagy of aggresomes.
Nat Commun. 2025 May 7;16(1):4243. doi: 10.1038/s41467-025-59556-x.

本文引用的文献

1
Cryo-EM structure of the essential ribosome assembly AAA-ATPase Rix7.
Nat Commun. 2019 Jan 31;10(1):513. doi: 10.1038/s41467-019-08373-0.
2
The Cdc48 unfoldase prepares well-folded protein substrates for degradation by the 26S proteasome.
Commun Biol. 2019 Jan 21;2:29. doi: 10.1038/s42003-019-0283-z. eCollection 2019.
3
Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome.
Nature. 2019 Jan;565(7737):49-55. doi: 10.1038/s41586-018-0736-4. Epub 2018 Nov 12.
4
Ubiquitin-Independent Disassembly by a p97 AAA-ATPase Complex Drives PP1 Holoenzyme Formation.
Mol Cell. 2018 Nov 15;72(4):766-777.e6. doi: 10.1016/j.molcel.2018.09.020. Epub 2018 Oct 18.
5
Substrate-engaged 26 proteasome structures reveal mechanisms for ATP-hydrolysis-driven translocation.
Science. 2018 Nov 30;362(6418). doi: 10.1126/science.aav0725. Epub 2018 Oct 11.
6
Akt Kinase Activation Mechanisms Revealed Using Protein Semisynthesis.
Cell. 2018 Aug 9;174(4):897-907.e14. doi: 10.1016/j.cell.2018.07.003. Epub 2018 Aug 2.
7
Structure of the Cdc48 ATPase with its ubiquitin-binding cofactor Ufd1-Npl4.
Nat Struct Mol Biol. 2018 Jul;25(7):616-622. doi: 10.1038/s41594-018-0085-x. Epub 2018 Jul 2.
8
Surface Properties Determining Passage Rates of Proteins through Nuclear Pores.
Cell. 2018 Jun 28;174(1):202-217.e9. doi: 10.1016/j.cell.2018.05.045.
9
Mechanistic insights into ER-associated protein degradation.
Curr Opin Cell Biol. 2018 Aug;53:22-28. doi: 10.1016/j.ceb.2018.04.004. Epub 2018 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验