UT-Heart Inc., 178-4-4 Wakashiba, Kashiwa, 277-0871, Japan.
Future Center Initiative, University of Tokyo, 178-4-4 Wakashiba, Kashiwa, 277-0871, Japan.
Sci Rep. 2019 Jun 27;9(1):9355. doi: 10.1038/s41598-019-45772-1.
Rapid sarcomere lengthening waves propagate along a single muscle myofibril during spontaneous oscillatory contraction (SPOC). In asynchronous insect flight muscles, SPOC is thought to be almost completely synchronized over the entire myofibril. This phenomenon does not require Ca regulation of the dynamics of the motor proteins, and cannot be explained simply by the longitudinal mechanical equilibrium among sarcomeres in the myofibril. In the present study, we rationalize these phenomena by considering the lateral mechanical equilibrium, in which two tensions originating from the inverse relationship between sarcomere length and lattice spacing, along with the lattice alignment, play important roles in the mechanical communication between motor proteins on adjacent filaments via the Z-disc. The proposed model is capable of explaining various SPOC phenomena based on the stochastic power-stroke mechanism of motor proteins, which responds to temporal changes in longitudinal mechanical load.
在自发振荡收缩(SPOC)过程中,快速肌节伸长波沿着单个肌纤维肌原纤维传播。在异步昆虫飞行肌肉中,人们认为 SPOC 在整个肌原纤维上几乎完全同步。这种现象不需要 Ca2+ 调节运动蛋白的动力学,也不能简单地用肌原纤维中肌节之间的纵向机械平衡来解释。在本研究中,我们通过考虑横向机械平衡来合理化这些现象,其中两个张力源自肌节长度和晶格间距之间的反比关系,以及晶格排列,在通过 Z 盘的相邻丝上的运动蛋白之间的机械通信中发挥重要作用。所提出的模型能够基于运动蛋白的随机力冲程机制来解释各种 SPOC 现象,该机制响应于纵向机械负荷的时间变化。