Interdepartmental Neuroscience Program, Yale University, New Haven, United States.
Department of Physics, Yale University, New Haven, United States.
Elife. 2019 Jun 28;8:e46409. doi: 10.7554/eLife.46409.
Terrestrial locomotion requires animals to coordinate their limb movements to efficiently traverse their environment. While previous studies in hexapods have reported that limb coordination patterns can vary substantially, the structure of this variability is not yet well understood. Here, we characterized the symmetric and asymmetric components of variation in walking kinematics in the genetic model organism . We found that use a single continuum of coordination patterns without evidence for preferred configurations. Spontaneous symmetric variability was associated with modulation of a single control parameter-stance duration-while asymmetric variability consisted of small, limb-specific modulations along multiple dimensions of the underlying symmetric pattern. Commands that modulated walking speed, originating from artificial neural activation or from the visual system, evoked modulations consistent with spontaneous behavior. Our findings suggest that employ a low-dimensional control architecture, which provides a framework for understanding the neural circuits that regulate hexapod legged locomotion.
陆地运动需要动物协调它们的肢体运动,以有效地穿越它们的环境。虽然之前在六足动物中的研究报告称,肢体协调模式可能有很大的变化,但这种变化的结构还不是很清楚。在这里,我们描述了遗传模式生物 的步行运动学中对称和非对称变化的组成部分。我们发现, 没有证据表明存在首选配置,而是使用单一的协调模式连续体。自发对称变化与单一控制参数——支撑持续时间的调制有关,而不对称变化则由对称模式下多个维度上的小、特定于肢体的调制组成。源自人工神经网络激活或视觉系统的调节步行速度的指令,引起了与自发行为一致的调制。我们的研究结果表明, 采用了一种低维控制架构,为理解调节六足动物腿部运动的神经回路提供了一个框架。