Rayshubskiy Aleksandr, Holtz Stephen L, Bates Alexander S, Vanderbeck Quinn X, Serratosa Capdevila Laia, Rockwell Victoria, Wilson Rachel
Department of Neurobiology, Harvard Medical School, Boston, United States.
Aelysia LTD, Bristol, United Kingdom.
Elife. 2025 Jul 21;13:RP102230. doi: 10.7554/eLife.102230.
Orienting behaviors provide a continuous stream of information about an organism's sensory experiences and plans. Thus, to study the links between sensation and action, it is useful to identify the neurons in the brain that control orienting behaviors. Here, we describe descending neurons in the brain that predict and influence orientation (heading) during walking. We show that these cells have specialized functions: whereas one cell type predicts sustained low-gain steering, the other predicts transient high-gain steering. These latter cells integrate internally directed steering signals from the head direction system with stimulus-directed steering signals from multimodal sensory pathways. The inputs to these cells are organized to produce 'see-saw' steering commands, so that increasing output from one brain hemisphere is accompanied by decreasing output from the other hemisphere. Together, our results show that internal and external drives are integrated to produce descending motor commands with different timescales, for flexible and precise control of an organism's orientation in space.
定向行为提供了关于生物体感官体验和计划的连续信息流。因此,为了研究感觉与行动之间的联系,识别大脑中控制定向行为的神经元是很有用的。在这里,我们描述了大脑中的下行神经元,它们在行走过程中预测并影响方向(航向)。我们表明,这些细胞具有特殊功能:一种细胞类型预测持续的低增益转向,另一种则预测瞬时的高增益转向。后一种细胞将来自头部方向系统的内向转向信号与来自多模态感觉通路的刺激导向转向信号整合在一起。这些细胞的输入被组织起来以产生“跷跷板”转向指令,这样一个脑半球输出的增加伴随着另一个脑半球输出的减少。总之,我们的结果表明,内部和外部驱动被整合以产生具有不同时间尺度的下行运动指令,从而灵活而精确地控制生物体在空间中的方向。