Guo Youhong, Zhou Xingyi, Zhao Fei, Bae Jiwoong, Rosenberger Brian, Yu Guihua
Materials Science and Engineering Program and Department of Mechanical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States.
Lockheed Martin Corporation , 1 Lockheed Boulevard , Fort Worth , Texas 76108 , United States.
ACS Nano. 2019 Jul 23;13(7):7913-7919. doi: 10.1021/acsnano.9b02301. Epub 2019 Jul 2.
Precisely controlled distribution of energy in solar-to-thermal energy conversion systems could allow for enhanced energy utilization. Light-absorbing hydrogels provide a means for evaporating water by using solar energy, yet targeted delivery of solar thermal energy to power the water evaporation process remains challenging. Here, we report a light-absorbing sponge-like hydrogel (LASH) that is created by gelation of a light-absorbing nanoparticle-modified polymer, leading to synergistic energy nanoconfinement and water activation. By experimental demonstration and theoretical simulation, the LASH presents record high vapor generation rates up to ∼3.6 kg m h and stable long-term performance under 1 sun (1 kW m) irradiation. We investigate the energy confinement at the polymer-nanoparticle interphases and the water activation enabled by polymer-water interaction to reveal the significance of such effects for high-rate solar vapor generation. The water vaporization enabled by LASHs can remove over 99.9% of salt ions in seawater through solar water desalination. The fundamental design principle, scalable fabrication route, and superior performance offer possibilities for portable solar water purification, industrial solar-powered water treatment, and other advanced solar thermal applications.
在太阳能到热能转换系统中精确控制能量分布可以提高能源利用效率。光吸收水凝胶提供了一种利用太阳能蒸发水的方法,然而将太阳能热能有针对性地输送以驱动水蒸发过程仍然具有挑战性。在此,我们报道了一种光吸收海绵状水凝胶(LASH),它是由光吸收纳米颗粒改性聚合物凝胶化形成的,导致能量协同纳米限域和水活化。通过实验演示和理论模拟,LASH在1个太阳(1 kW/m²)辐照下呈现出高达约3.6 kg m⁻² h⁻¹的创纪录高蒸汽产生速率和稳定的长期性能。我们研究了聚合物 - 纳米颗粒界面处的能量限域以及聚合物 - 水相互作用实现的水活化,以揭示这些效应对于高速率太阳能蒸汽产生的重要性。LASH实现的水汽化可以通过太阳能海水淡化去除海水中超过99.9%的盐离子。其基本设计原理、可扩展的制造路线和卓越性能为便携式太阳能水净化、工业太阳能驱动水处理及其他先进太阳能热应用提供了可能性。