Wegeberg Christina, Browne Wesley R, McKenzie Christine J
Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , Campusvej 55 , 5230 Odense M , Denmark.
Molecular Inorganic Chemistry, Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands.
Inorg Chem. 2019 Jul 15;58(14):8983-8994. doi: 10.1021/acs.inorgchem.9b00247. Epub 2019 Jun 28.
The Fe/Fe redox potentials for [Fe(tpen)], [Fe(tpena)], and [Fe(tpenO)] (-R-,''-tris(2-pyridylmethyl)ethane-1,2-diamine, where R = CHCHN, CHCOO, CHCHO, respectively) span 470 mV with the oxidation potentials following the order [Fe(tpenO)] (MeOH) < [Fe(tpena)] (MeCN) < [Fe(tpen)] (MeCN). In their +3 oxidation states the complexes react with 1 equiv of HO to give the purple [Fe(OOH)(HL)] ( = 2 for L = tpena, tpenO; = 3 for L = tpen). A pyridine arm is decoordinated in these complexes, furnishing a second coordination sphere base which is protonated at ambient pH. The lifetimes of these transient species depend on how readily the substrate (sometimes the solvent) is oxidized and reflect the trend in both the O-O bond lability and oxidizing potency of the putative iron-based oxidant derived from the iron(III) peroxides. In methanol solution, [Fe(tpenO)] and [Fe(tpena)] exist in their Fe(III) states and hence the formation of [Fe(OOH)(Htpena)] and [Fe(OOH)(HtpenO)] is instantaneous. This is in contrast to the short lag time that occurs before adduct formation between [Fe(tpen)] and HO due to the requisite prior oxidation of the solution-state iron(II) complex to its iron(III) state. Stabilization of the +3 iron oxidation state in the resting state catalysts affords complexes that activate HO more readily with the consequence of higher yields in the oxidation of the C-H bonds using HO as terminal oxidant. The presence of a monodentate carboxylato donor increases the rate of oxidation by hydrogen atom transfer in comparison to the systems with an alkoxo or pyridine in this position. Competing with substrate oxidation is the oxidative modification of the alkoxido group in [Fe(tpenO)], converting it to a carboxylato group in the presence of HO: in effect, transforming tpenO to tpena.
[Fe(tpen)]、[Fe(tpena)]和[Fe(tpenO)](-R-,''-三(2-吡啶甲基)乙烷-1,2-二胺,其中R分别为CHCHN、CHCOO、CHCHO)的铁/铁氧化还原电位跨度为470 mV,氧化电位顺序为[Fe(tpenO)](甲醇)<[Fe(tpena)](乙腈)<[Fe(tpen)](乙腈)。在其+3氧化态下,这些配合物与1当量的HO反应生成紫色的[Fe(OOH)(HL)](对于L = tpena、tpenO,λ = 2;对于L = tpen,λ = 3)。在这些配合物中,一个吡啶臂发生去配位,提供了一个第二配位层碱,该碱在环境pH下被质子化。这些瞬态物种的寿命取决于底物(有时是溶剂)被氧化的难易程度,并反映了假定的源自铁(III)过氧化物的铁基氧化剂的O-O键稳定性和氧化能力的趋势。在甲醇溶液中,[Fe(tpenO)]和[Fe(tpena)]以其Fe(III)状态存在,因此[Fe(OOH)(Htpena)]和[Fe(OOH)(HtpenO)]的形成是瞬间的。这与[Fe(tpen)]和HO之间形成加合物之前出现的短延迟时间形成对比,这是由于溶液态铁(II)配合物需要先氧化为其铁(III)状态。静止态催化剂中+3铁氧化态的稳定化提供了更容易活化HO的配合物,结果是以HO作为终端氧化剂时C-H键氧化的产率更高。与具有烷氧基或吡啶的系统相比,单齿羧基供体的存在增加了通过氢原子转移的氧化速率。与底物氧化竞争的是[Fe(tpenO)]中烷氧基的氧化修饰,在HO存在下将其转化为羧基:实际上,将tpenO转化为tpena。