Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.
Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.
J Am Chem Soc. 2021 Nov 3;143(43):18121-18130. doi: 10.1021/jacs.1c06911. Epub 2021 Oct 26.
Enzymes exert control over the reactivity of metal centers with precise tuning of the secondary coordination sphere of active sites. One particularly elegant illustration of this principle is in the controlled delivery of proton and electron equivalents in order to activate abundant but kinetically inert oxidants such as O for oxidative chemistry. Chemists have drawn inspiration from biology in designing molecular systems where the secondary coordination sphere can shuttle protons or electrons to substrates. However, a biomimetic activation of O requires the transfer of both protons electrons, and molecular systems where ancillary ligands are designed to provide both of these equivalents are comparatively rare. Here, we report the use of a dihydrazonopyrrole (DHP) ligand complexed to Fe to perform exactly such a biomimetic activation of O. In the presence of O, this complex directly generates a high spin Fe(III)-hydroperoxo intermediate which features a DHP ligand radical via ligand-based transfer of an H atom. This system displays oxidative reactivity and ultimately releases hydrogen peroxide, providing insight on how secondary coordination sphere interactions influence the evolution of oxidizing intermediates in Fe-mediated aerobic oxidations.
酶通过精确调节活性位点的次级配位球来控制金属中心的反应性。这一原理的一个特别优雅的例证是质子和电子当量的控制传递,以激活丰富但动力学惰性的氧化剂,如 O,用于氧化化学。化学家从生物学中汲取灵感,设计了分子系统,其中次级配位球可以将质子或电子转移到底物上。然而,O 的仿生激活需要同时转移质子和电子,而设计辅助配体来提供这两种当量的分子系统相对较少。在这里,我们报告了使用二酰肼基吡咯 (DHP) 配体络合到 Fe 上,来对 O 进行这种仿生激活。在 O 的存在下,该配合物直接生成高自旋 Fe(III)-过氧氢中间物,通过配体的 H 原子转移生成 DHP 配体自由基。该系统显示出氧化反应性,并最终释放出过氧化氢,为次级配位球相互作用如何影响 Fe 介导的需氧氧化中氧化中间体的演变提供了见解。