Zhu Yuchen, Hou Jiaxin, Gray Dominic M, McDonald Tom O, Dumanli Ahu Gümrah
Department of Materials, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK.
Henry Royce Institute, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK.
Heliyon. 2024 May 31;10(12):e32184. doi: 10.1016/j.heliyon.2024.e32184. eCollection 2024 Jun 30.
Poly(-isopropylacrylamide) (PNIPAM) nanogels are promising responsive colloidal particles that can be used in pharmaceutical applications as drug carriers. This work investigates the temperature-dependent morphological changes and agglomeration of PNIPAM nanogels in the presence of mono- and multi-valent cationic electrolytes. We described the deswelling, flocculation, thermal reversibility behaviour and aggregated morphology of PNIPAM nanogels over a range of electrolyte concentrations and temperatures revealing the critical transition points from stable suspension to spontaneous agglomeration. We demonstrated that the flocculating ability and the rate of aggregate formation follow the order of deswelling behaviour. Transmission electron microscopy and atomic force microscopy analysis revealed the presence of a shell-like layer with varying density in the multivalent electrolyte solutions when compared to those in aqueous medium. We identified a concentration threshold of the thermally induced reversible aggregation/dispersion for the PNIPAM nanogels in the presence of Na and K ions at 10 mM, for Mg and Ca ions at 1 mM and for Al ions at 0.1 mM concentrations. Such concentration thresholds indicated the effective destabilization of the electrolyte system with multivalency following the Schulze-Hardy rule. Our findings were supported by applying a Debye screening model that accounts for the shielding effect of multivalent cationic electrolytes on these nanogel systems. Our experiments and the models confirmed the compression of the electric double layer as the valency and ionic strength increased, except for Al at higher concentrations which seemed to disrupt the electrical double layer and cause reversal of zeta potential. Our work highlights the significant impact the presence of multivalent cations can impose on the stability and morphology of nanogels, and this understanding will help in designing responsive nanogel systems based on PNIPAM nanogels.
聚(N-异丙基丙烯酰胺)(PNIPAM)纳米凝胶是一种很有前景的响应性胶体颗粒,可作为药物载体用于制药应用。这项工作研究了在单价和多价阳离子电解质存在下,PNIPAM纳米凝胶随温度变化的形态变化和团聚情况。我们描述了PNIPAM纳米凝胶在一系列电解质浓度和温度下的去溶胀、絮凝、热可逆行为和聚集形态,揭示了从稳定悬浮到自发团聚的临界转变点。我们证明了絮凝能力和聚集体形成速率遵循去溶胀行为的顺序。透射电子显微镜和原子力显微镜分析表明,与水性介质中的情况相比,在多价电解质溶液中存在密度不同的壳状层。我们确定了在存在10 mM的Na和K离子、1 mM的Mg和Ca离子以及0.1 mM的Al离子时,PNIPAM纳米凝胶热诱导可逆聚集/分散的浓度阈值。这些浓度阈值表明,遵循舒尔茨-哈迪规则,多价性会使电解质系统有效失稳。我们的研究结果得到了德拜屏蔽模型的支持,该模型考虑了多价阳离子电解质对这些纳米凝胶系统的屏蔽作用。我们的实验和模型证实,随着化合价和离子强度的增加,双电层会被压缩,但高浓度的Al似乎会破坏双电层并导致zeta电位反转。我们的工作突出了多价阳离子的存在对纳米凝胶稳定性和形态的重大影响,这种认识将有助于设计基于PNIPAM纳米凝胶的响应性纳米凝胶系统。