Department of Computer Science, University of North Carolina at Chapel Hill, USA 201 S. Columbia St., Chapel Hill, NC 27599, USA.
Imaging Genetics Center, University of Southern California, USA 2001 N. Soto Street, SSB1-102, Los Angeles, CA 90032, USA; Department of Radiology, University of Pennsylvania, USA 3400 Civic Center Boulevard Atrium, Ground Floor, Philadelphia, PA 19104, USA.
Med Image Anal. 2019 Aug;56:193-209. doi: 10.1016/j.media.2019.06.003. Epub 2019 Jun 12.
Deformable image registration and regression are important tasks in medical image analysis. However, they are computationally expensive, especially when analyzing large-scale datasets that contain thousands of images. Hence, cluster computing is typically used, making the approaches dependent on such computational infrastructure. Even larger computational resources are required as study sizes increase. This limits the use of deformable image registration and regression for clinical applications and as component algorithms for other image analysis approaches. We therefore propose using a fast predictive approach to perform image registrations. In particular, we employ these fast registration predictions to approximate a simplified geodesic regression model to capture longitudinal brain changes. The resulting method is orders of magnitude faster than the standard optimization-based regression model and hence facilitates large-scale analysis on a single graphics processing unit (GPU). We evaluate our results on 3D brain magnetic resonance images (MRI) from the ADNI datasets.
可变形图像配准和回归是医学图像分析中的重要任务。然而,它们的计算成本很高,特别是在分析包含数千张图像的大规模数据集时。因此,通常使用集群计算,使得这些方法依赖于这种计算基础设施。随着研究规模的增加,需要更大的计算资源。这限制了可变形图像配准和回归在临床应用中的使用,也限制了它们作为其他图像分析方法的组成算法的使用。因此,我们提出使用快速预测方法来进行图像配准。具体来说,我们使用这些快速配准预测来近似简化的测地线回归模型,以捕获大脑的纵向变化。与基于标准优化的回归模型相比,所得到的方法快了几个数量级,因此可以在单个图形处理单元 (GPU) 上进行大规模分析。我们在 ADNI 数据集的 3D 脑磁共振图像 (MRI) 上评估了我们的结果。