Suppr超能文献

快银:快速预测图像配准 - 深度学习方法。

Quicksilver: Fast predictive image registration - A deep learning approach.

机构信息

University of North Carolina at Chapel Hill, Chapel Hill, USA.

Department of Computer Science, University of Salzburg, Austria.

出版信息

Neuroimage. 2017 Sep;158:378-396. doi: 10.1016/j.neuroimage.2017.07.008. Epub 2017 Jul 11.

Abstract

This paper introduces Quicksilver, a fast deformable image registration method. Quicksilver registration for image-pairs works by patch-wise prediction of a deformation model based directly on image appearance. A deep encoder-decoder network is used as the prediction model. While the prediction strategy is general, we focus on predictions for the Large Deformation Diffeomorphic Metric Mapping (LDDMM) model. Specifically, we predict the momentum-parameterization of LDDMM, which facilitates a patch-wise prediction strategy while maintaining the theoretical properties of LDDMM, such as guaranteed diffeomorphic mappings for sufficiently strong regularization. We also provide a probabilistic version of our prediction network which can be sampled during the testing time to calculate uncertainties in the predicted deformations. Finally, we introduce a new correction network which greatly increases the prediction accuracy of an already existing prediction network. We show experimental results for uni-modal atlas-to-image as well as uni-/multi-modal image-to-image registrations. These experiments demonstrate that our method accurately predicts registrations obtained by numerical optimization, is very fast, achieves state-of-the-art registration results on four standard validation datasets, and can jointly learn an image similarity measure. Quicksilver is freely available as an open-source software.

摘要

本文介绍了 Quicksilver,一种快速的可变形图像配准方法。Quicksilver 对图像对的配准是通过直接基于图像外观的变形模型的补丁预测来实现的。使用深度编解码器网络作为预测模型。虽然预测策略是通用的,但我们专注于对大变形仿射度量映射(LDDMM)模型的预测。具体来说,我们预测 LDDMM 的动量参数化,这有利于补丁预测策略,同时保持 LDDMM 的理论性质,例如在足够强的正则化下保证保形映射。我们还提供了我们的预测网络的概率版本,该版本可以在测试时进行采样,以计算预测变形中的不确定性。最后,我们引入了一个新的校正网络,该网络大大提高了已有预测网络的预测精度。我们展示了单模态图谱到图像以及单模态/多模态图像到图像配准的实验结果。这些实验表明,我们的方法能够准确预测数值优化得到的配准,速度非常快,在四个标准验证数据集上达到了最先进的配准结果,并且可以联合学习图像相似性度量。Quicksilver 作为开源软件免费提供。

相似文献

1
Quicksilver: Fast predictive image registration - A deep learning approach.快银:快速预测图像配准 - 深度学习方法。
Neuroimage. 2017 Sep;158:378-396. doi: 10.1016/j.neuroimage.2017.07.008. Epub 2017 Jul 11.
3
Adversarial learning for mono- or multi-modal registration.对抗学习的单模态或多模态配准。
Med Image Anal. 2019 Dec;58:101545. doi: 10.1016/j.media.2019.101545. Epub 2019 Aug 24.

引用本文的文献

2
Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization.通过流体驱动的异常随机化解析正常解剖结构。
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2025 Jun;2025:10455-10465. doi: 10.1109/cvpr52734.2025.00978. Epub 2025 Aug 13.
3
[AI-based applications in medical image computing].医学图像计算中基于人工智能的应用
Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2025 Jul 2. doi: 10.1007/s00103-025-04093-7.
8
Synthetic data in generalizable, learning-based neuroimaging.可推广的基于学习的神经影像学中的合成数据。
Imaging Neurosci (Camb). 2024 Nov 19;2:1-22. doi: 10.1162/imag_a_00337. eCollection 2024 Nov 1.

本文引用的文献

1
Guiding multimodal registration with learned optimization updates.通过学习优化更新来指导多模态配准。
Med Image Anal. 2017 Oct;41:2-17. doi: 10.1016/j.media.2017.05.002. Epub 2017 May 6.
3
Fully Convolutional Networks for Semantic Segmentation.全卷积网络用于语义分割。
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
4
A CNN Regression Approach for Real-Time 2D/3D Registration.一种用于实时 2D/3D 配准的 CNN 回归方法。
IEEE Trans Med Imaging. 2016 May;35(5):1352-1363. doi: 10.1109/TMI.2016.2521800. Epub 2016 Jan 26.
10
Multi-modal registration for correlative microscopy using image analogies.使用图像类比的相关显微镜多模态配准。
Med Image Anal. 2014 Aug;18(6):914-26. doi: 10.1016/j.media.2013.12.005. Epub 2013 Dec 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验