Teshima Yoshikazu, Saito Masahiko, Fukuhara Tomohiro, Mikie Tsubasa, Komeyama Kimihiro, Yoshida Hiroto, Ohkita Hideo, Osaka Itaru
Department of Applied Chemistry, Graduate School of Engineering , Hiroshima University , 1-4-1 Kagamiyama , Higashi-Hiroshima , Hiroshima 739-8527 , Japan.
Department of Polymer Chemistry, Graduate School of Engineering , Kyoto University , Katsura, Kyoto 615-8510 , Japan.
ACS Appl Mater Interfaces. 2019 Jul 3;11(26):23410-23416. doi: 10.1021/acsami.9b05361. Epub 2019 Jun 18.
N-type (electron-transporting) semiconducting polymers are essential materials for the development of truly plastic electronic devices. Here, we synthesized for the first time dithiazolylthienothiophene bisimide (TzBI), as a new family for imide-based electron-deficient π-conjugated systems, and semiconducting polymers by incorporating TzBI into the π-conjugated backbone as the building unit. The TzBI-based polymers are found to have deep frontier molecular orbital energy levels and wide optical bandgaps compared to the dithienylthienothiophene bisimide (TBI) counterpart. It is also found that TzBI can promote the π-π intermolecular interactions of the polymer backbones relative to TBI most probably because the thiazole ring, which replaced the thiophene ring, at the end of the framework gives a more coplanar backbone. In fact, TzBI-based polymers function as the n-type semiconducting material in both organic field-effect transistor (OFET) and organic photovoltaic (OPV) devices. Notably, one of the TzBI-based polymers provides a power conversion efficiency of 3.3% in the all-polymer OPV device, which could be high for a low-molecular-weight polymer (<10 kDa). Interestingly, while many of the n-type semiconducting polymers utilized in OPVs have narrow bandgaps, the TzBI-based polymers have wide bandgaps. This is highly beneficial for complementing the visible to near-IR light absorption range when blended with p-type narrow bandgap polymers that have been widely developed in the last decade. The results demonstrate great promise and possibility of TzBI as the building unit for n-type semiconducting polymers.
N型(电子传输型)半导体聚合物是开发真正的塑料电子器件的关键材料。在此,我们首次合成了二噻唑基噻吩并噻吩双酰亚胺(TzBI),作为基于酰亚胺的缺电子π共轭体系的一个新家族,并通过将TzBI作为构建单元并入π共轭主链中合成了半导体聚合物。与二噻吩基噻吩并噻吩双酰亚胺(TBI)相比,发现基于TzBI的聚合物具有更深的前沿分子轨道能级和更宽的光学带隙。还发现,相对于TBI,TzBI可以促进聚合物主链的π-π分子间相互作用,这很可能是因为框架末端取代噻吩环的噻唑环使主链更共面。事实上,基于TzBI的聚合物在有机场效应晶体管(OFET)和有机光伏(OPV)器件中均作为n型半导体材料发挥作用。值得注意的是,一种基于TzBI的聚合物在全聚合物OPV器件中提供了3.3%的功率转换效率,对于低分子量聚合物(<10 kDa)而言,这可能是很高的。有趣的是,虽然OPV中使用的许多n型半导体聚合物具有窄带隙,但基于TzBI的聚合物具有宽带隙。当与过去十年中广泛开发的p型窄带隙聚合物混合时,这对于补充可见光到近红外光的吸收范围非常有益。结果表明,TzBI作为n型半导体聚合物的构建单元具有巨大的前景和可能性。