Wang Yazhou, Yu Yaping, Liao Hailiang, Zhou Yecheng, McCulloch Iain, Yue Wan
State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
Acc Chem Res. 2020 Dec 15;53(12):2855-2868. doi: 10.1021/acs.accounts.0c00480. Epub 2020 Nov 17.
ConspectusBecause of their low-temperature processing properties and inherent mechanical flexibility, semiconducting materials are promising candidates for enabling flexible displays, renewable energy, biological sensors, and healthcare. Progress has been made in materials performance by developing judicious materials design strategies. For example, improvements in electron transport have required new electron-deficient aromatics. Among them, isoindigo (IID) is an important functional group utilized in conjugated aromatics, where the structure combines two sets of five-membered electron-withdrawing lactam rings, exhibiting enhanced solubility, excellent chemical and thermal stabilities, broad absorption, and intriguing electron affinity.In the past decade, researchers have mainly focused on IID-based materials. However, the effect of heteroatom modification of the IID core has rarely been systemically investigated. In conventional conjugated polymers, single bonds connect the monomers, leading to energetic disorder and torsion defects, while ladder-type polymers are often intractable because of their fused nature. In this regard, the molecular design of new π scaffolds based on IID is central to the development of high-performance semiconductor polymers. Especially, a complete refresh of molecular design strategies and novel conjugated polymers with unique structures are needed to circumvent the disadvantages of the conventional ladder-type polymers.In this Account, we systematically summarize our recent progress in the design, synthesis, and structure-property relationships of IID- and particularly hetero-IID-based functional materials. More specifically, starting with molecular engineering of hetero-IIDs with variable electronic effects, conjugation lengths, and numbers of heterorings, we discuss the effect of the heteroring on the absorption spectra and energy levels. Additionally, we investigate a series of electron-withdrawing substitution of IIDs and hetero-IIDs and their molecular self-assembly behavior and the device performance. Furthermore, we discuss a series of IID-bis(EDOT) copolymers with hydrophilic ethylene glycol side chains for accumulation-mode organic thin-film electrochemical transistors, in which the relationships among the molecular structure, operational stability, film morphology, and device performance were revealed. Compared with IID polymers, the HOMO levels and optical band gaps of the thiophene and thienothiophene IID copolymers markedly decrease, and these polymers exhibit ambipolar charge transport. When we further expanded the IID core to a thieno[3,2-][1]benzothiophene isoindigo (TBTI) core, such as in TBTIT, bulk-heterojunction solar cells employing this polymer class as the electron donor achieved good efficiency for additive- and annealing-free device conditions. When we introduced electron-deficient pyridine on the IID core, both the LUMO and HOMO energy levels of the copolymers markedly decreased, which significantly improved the electron mobility. In addition, we compare the correlation between the polymer structures of IID and hetero-IID copolymers with thiophene and benzothiophene as comonomers and their absorption spectra and energy levels. In particular, we evaluate the planarity and the dihedral angle between the repeat units, with systematic analysis by theoretical calculations to support our design concepts. We discuss polymer designs arising from simple aldol condensation, where the rigid backbone conformation has been locked by the double bonds. Our polymers display broad absorption from the visible to the NIR-II region, and more importantly, the high electron affinities of these polymers provide a platform to realize ambient-stable electron transport in solution-processed organic thin-film transistors. These exciting results are expected to open doors to new horizons of semiconducting materials in terms of other charming applications and the design and synthesis of superior materials.
综述
由于具有低温加工特性和固有的机械柔韧性,半导体材料有望用于实现柔性显示器、可再生能源、生物传感器和医疗保健等领域。通过制定明智的材料设计策略,材料性能已取得进展。例如,电子传输的改善需要新型缺电子芳烃。其中,异靛蓝(IID)是共轭芳烃中使用的重要官能团,其结构结合了两组五元吸电子内酰胺环,具有增强的溶解性、优异的化学和热稳定性、宽吸收以及引人关注的电子亲和力。
在过去十年中,研究人员主要关注基于IID的材料。然而,IID核心的杂原子修饰效果很少得到系统研究。在传统共轭聚合物中,单键连接单体,导致能量无序和扭转缺陷,而梯形聚合物由于其稠合性质往往难以处理。在这方面,基于IID的新型π支架的分子设计是高性能半导体聚合物发展的核心。特别是,需要彻底更新分子设计策略并开发具有独特结构的新型共轭聚合物,以规避传统梯形聚合物的缺点。
在本综述中,我们系统地总结了我们在基于IID特别是基于杂原子IID的功能材料的设计、合成及结构-性能关系方面的最新进展。更具体地说,从具有可变电子效应、共轭长度和杂环数量的杂原子IID的分子工程入手,我们讨论了杂环对吸收光谱和能级的影响。此外,我们研究了一系列IID和杂原子IID的吸电子取代及其分子自组装行为和器件性能。此外,我们讨论了一系列具有亲水性乙二醇侧链的IID-双(EDOT)共聚物用于累积模式有机薄膜电化学晶体管,其中揭示了分子结构、操作稳定性、薄膜形态和器件性能之间的关系。与IID聚合物相比,噻吩和噻吩并噻吩IID共聚物的最高占据分子轨道(HOMO)能级和光学带隙显著降低,并且这些聚合物表现出双极性电荷传输。当我们将IID核心进一步扩展为噻吩并[3,2-][1]苯并噻吩异靛蓝(TBTI)核心时,例如在TBTIT中,采用这种聚合物类作为电子供体的本体异质结太阳能电池在无添加剂和无退火的器件条件下实现了良好的效率。当我们在IID核心上引入缺电子吡啶时,共聚物的最低未占据分子轨道(LUMO)和HOMO能级均显著降低,这显著提高了电子迁移率。此外,我们比较了以噻吩和苯并噻吩作为共聚单体的IID和杂原子IID共聚物的聚合物结构与其吸收光谱和能级之间的相关性。特别是,我们通过理论计算进行系统分析来评估重复单元之间的平面性和二面角,以支持我们的设计概念。我们讨论了由简单羟醛缩合产生的聚合物设计,其中刚性主链构象已被双键锁定。我们的聚合物在从可见光到近红外-II区域显示出宽吸收,更重要的是,这些聚合物的高电子亲和力为在溶液处理的有机薄膜晶体管中实现环境稳定的电子传输提供了一个平台。这些令人兴奋的结果有望在其他迷人的应用以及优质材料的设计和合成方面为半导体材料的新领域打开大门。