Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China.
University of Chinese Academy of Sciences , Beijing 100049, P. R. China.
Acc Chem Res. 2017 Jun 20;50(6):1342-1350. doi: 10.1021/acs.accounts.7b00050. Epub 2017 Apr 4.
Because of the tailorable photoelectric properties derived from judicious molecular design and large-area and low-temperature processability especially on flexible substrates, design and synthesis of new organic π-functional materials is always a central topic in the field of organic optoelectronics, which siginificantly contributed to the development of high-performance optoelectronic devices such as organic photovoltaics (OPVs), organic field-effect transistors (OFETs), and organic light-emitting diodes (OLEDs). Compared with polymers, small molecules with well-defined molecular structures benefit the establishment of structure-property relationships, which may provide valuable guidelines for the design of new optoelectronic materials to further promote the device performance. New building blocks are essential for the construction of optoelectronic materials. As is well recognized, thiophene-based functional materials have played an indispensable role in the development of organic optoelectronics. Compared with six-membered benzene, five-membered thiophene shows weaker aromaticity and lower steric hindrance and may provide extra sulfur-sulfur interactions in solid state. Among various thiophene building blocks, thieno[3,4-b]thiophene (TbT) is an asymmetric fused bithiophene containing four functionalization positions, in which the proaromatic thiophene can effectively stabilize the quinoidal resonance of the aromatic thiophene. Thus, TbT exhibits a unique characteristic of quinoid-resonance effect that is powerful to modulate electronic structures. Although the application of TbT in polymer donor materials represented by PTB-7 has achieved a great success, its application in small-molecule optoelectronic materials is almost an untouched field. In this Account, we summerize the rational design of a series of TbT-based small-molecule optoelectronic materials designed and optimized by quinoid-resonance effect, regiochemistry, and side-chain engineering and demonstrate the crucial effect of TbT building blocks on the electronic structures, photophysical and charge transport properties, and photovoltaic performance. With well-defined regioregular oligothieno[3,4-b]thiopenes, we revealed the quinoid-resonance effect of the TbT moiety and its geometric origin. TbT-based small molecules exhibit full-color tunable emissions in the visible to near-infrared regions and excellent performance in OFETs and OPVs. For instance, TbT-based quinoidal molecules with near-infrared fluorescence quantum yields up to 53.1% and TbT-based aromatic molecules with full-color-tunable emissions and high fluorescence quantum yields approaching 100% in polar solvent were designed and synthesized. Solution-processable ambient-stable n-channel organic thin-film transistors based on two-dimensional π-expanded quinoidal terthiophenes with distal or proximal sulfur orientations (2DQTTs) realized a record electron mobility of 5.2 cm V s. Furthermore, TbT-based electron donor and electron acceptor materials were successfully designed for OPV applications delivering high power conversion efficiencies up to 9.26% and 10.07%, respectively. We believe that new TbT-based small-molecule materials designed by a synergy of molecular engineering strategy may not only further promote OFET and OPV performance but also realize more unique applications.
由于光电性能可通过合理的分子设计进行调节,且易于在大面积和低温条件下加工,尤其是在柔性衬底上,新型有机π功能材料的设计和合成一直是有机光电领域的核心课题,这为高性能光电设备的发展做出了重大贡献,如有机光伏(OPV)、有机场效应晶体管(OFET)和有机发光二极管(OLED)。与聚合物相比,具有明确分子结构的小分子有利于建立结构-性能关系,这可能为新型光电材料的设计提供有价值的指导,以进一步提高器件性能。新的构建模块对于光电材料的构建至关重要。众所周知,噻吩基功能材料在有机光电发展中发挥了不可或缺的作用。与六元苯相比,五元噻吩的芳香性较弱,空间位阻较小,在固态中可能提供额外的硫-硫相互作用。在各种噻吩构建模块中,噻吩并[3,4-b]噻吩(TbT)是一种包含四个功能化位置的不对称稠合双噻吩,其中前芳香噻吩可有效稳定芳香噻吩的醌型共振。因此,TbT 表现出独特的醌型共振效应特征,可有力调节电子结构。尽管 TbT 在以 PTB-7 为代表的聚合物给体材料中的应用取得了巨大成功,但它在小分子光电材料中的应用几乎是一个未开发的领域。在本专题介绍中,我们总结了一系列基于 TbT 的小分子光电材料的合理设计,这些材料通过醌型共振效应、区域化学和侧链工程进行设计和优化,并展示了 TbT 构建模块对电子结构、光物理和电荷输运性能以及光伏性能的关键影响。通过使用具有明确的区域规整的聚噻吩[3,4-b]噻吩,我们揭示了 TbT 部分的醌型共振效应及其几何起源。基于 TbT 的小分子在可见到近红外区域表现出全色可调发射,并且在 OFET 和 OPV 中表现出优异的性能。例如,设计并合成了基于 TbT 的具有近红外荧光量子产率高达 53.1%的类醌分子,以及基于 TbT 的具有全色可调发射和接近 100%的荧光量子产率的芳香族分子,它们在极性溶剂中。基于二维π扩展类醌三噻吩的具有远端或近端硫取向的溶液处理型环境稳定 n 通道有机薄膜晶体管(2DQTTs)实现了 5.2 cm V s 的创纪录电子迁移率。此外,基于 TbT 的电子给体和电子受体材料成功设计用于 OPV 应用,分别实现了高达 9.26%和 10.07%的高功率转换效率。我们相信,通过分子工程策略的协同作用设计的新型 TbT 基小分子材料不仅可以进一步提高 OFET 和 OPV 的性能,而且还可以实现更独特的应用。