Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany.
Product Supply, Bayer AG, Friedrich Ebert Str. 217-475, 42117, Wuppertal, Germany.
Microb Cell Fact. 2019 Jun 28;18(1):114. doi: 10.1186/s12934-019-1162-5.
Actinoplanes sp. SE50/110 is a natural producer of acarbose. It has been extensively studied in the last decades, which has led to the comprehensive analysis of the whole genome, transcriptome and proteome. First genetic and microbial techniques have been successfully established allowing targeted genome editing by CRISPR/Cas9 and conjugal transfer. Still, a suitable system for the overexpression of singular genes does not exist for Actinoplanes sp. SE50/110. Here, we discuss, test and analyze different strategies by the example of the acarbose biosynthesis gene acbC.
The integrative φC31-based vector pSET152 was chosen for the development of an expression system, as for the replicative pSG5-based vector pKC1139 unwanted vector integration by homologous recombination was observed. Since simple gene duplication by pSET152 integration under control of native promoters appeared to be insufficient for overexpression, a promoter screening experiment was carried out. We analyzed promoter strengths of five native and seven heterologous promoters using transcriptional fusion with the gusA gene and glucuronidase assays as well as reverse transcription quantitative PCR (RT-qPCR). Additionally, we mapped transcription starts and identified the promoter sequence motifs by 5'-RNAseq experiments. Promoters with medium to strong expression were included into the pSET152-system, leading to an overexpression of the acbC gene. AcbC catalyzes the first step of acarbose biosynthesis and connects primary to secondary metabolism. By overexpression, the acarbose formation was not enhanced, but slightly reduced in case of strongest overexpression. We assume either disturbance of substrate channeling or a negative feed-back inhibition by one of the intermediates, which accumulates in the acbC-overexpression mutant. According to LC-MS-analysis, we conclude, that this intermediate is valienol-7P. This points to a bottleneck in later steps of acarbose biosynthesis.
Development of an overexpression system for Actinoplanes sp. SE50/110 is an important step for future metabolic engineering. This system will help altering transcript amounts of singular genes, that can be used to unclench metabolic bottlenecks and to redirect metabolic resources. Furthermore, an essential tool is provided, that can be transferred to other subspecies of Actinoplanes and industrially relevant derivatives.
游动放线菌 SE50/110 是阿卡波糖的天然生产者。在过去的几十年中,它已经被广泛研究,这导致了对整个基因组、转录组和蛋白质组的全面分析。首先,成功建立了遗传和微生物技术,允许通过 CRISPR/Cas9 和共轭转移进行靶向基因组编辑。然而,对于游动放线菌 SE50/110 来说,仍然没有一个合适的用于单个基因过表达的系统。在这里,我们通过阿卡波糖生物合成基因 acbC 的例子讨论、测试和分析了不同的策略。
整合型 φC31 载体 pSET152 被选为表达系统的开发载体,因为在基于复制的 pSG5 载体 pKC1139 中观察到了由同源重组引起的不必要的载体整合。由于通过 pSET152 整合在天然启动子控制下的简单基因复制似乎不足以过表达,因此进行了启动子筛选实验。我们使用与 gusA 基因的转录融合以及葡糖醛酸酶测定和逆转录定量 PCR (RT-qPCR) 分析了五个天然和七个异源启动子的强度。此外,我们通过 5'-RNAseq 实验绘制了转录起始并鉴定了启动子序列基序。将表达强度中等至较强的启动子纳入 pSET152 系统,导致 acbC 基因的过表达。AcbC 催化阿卡波糖生物合成的第一步,连接初级代谢和次级代谢。通过过表达,阿卡波糖的形成并没有增强,而是在最强过表达的情况下略有减少。我们假设这是由于底物通道的干扰或其中一种中间体的负反馈抑制,该中间体在 acbC 过表达突变体中积累。根据 LC-MS 分析,我们得出结论,这种中间体是 valienol-7P。这表明阿卡波糖生物合成的后期步骤存在瓶颈。
开发游动放线菌 SE50/110 的过表达系统是未来代谢工程的重要步骤。该系统将有助于改变单个基因的转录物数量,可用于松开代谢瓶颈并重新分配代谢资源。此外,还提供了一个重要的工具,可以转移到其他游动放线菌亚种和工业相关衍生物中。