Department of Electronics and Communication Engineering, Muthayammal Engineering College, Rasipuram, Tamil Nadu, India.
J Med Syst. 2019 Jun 28;43(8):252. doi: 10.1007/s10916-019-1396-0.
Detection of a pulmonary fissure in lungs is difficult due to its anatomical changeability among humans and it is essential in the clinical environment for accurate localizing and treating the lung abnormalities on a lobe level in human lungs. In this work, an algorithmic approach is proposed to detect the lung oblique fissures from lung computed tomography (CT) images. In the preprocessing module of our approach, the lung structures are enhanced using morphological operation and lung images are de-noised using Wiener filter. In the second module, lung regions are segmented using techniques, namely, thresholding and background subtraction. In the third module of our algorithm, initially, fissure regions are segmented using the active contour model, then by applying the rule based approach on the fissure regions, the oblique fissures are segmented. The proposed algorithm has been tested on 50 images collected from Lung Image Database Consortium (LIDC) and 30 images obtained from Early Lung Cancer Action Program (ELCAP).
由于肺裂在人体中的解剖结构变化多端,因此很难在肺部中检测到它。在临床环境中,对于在人体肺部的叶水平上准确定位和治疗肺部异常,肺裂的检测至关重要。在这项工作中,提出了一种从肺部 CT 图像中检测肺斜裂的算法方法。在我们方法的预处理模块中,使用形态学操作增强肺结构,并使用维纳滤波器对肺图像进行去噪。在我们算法的第二个模块中,使用阈值和背景减除技术对肺区域进行分割。在算法的第三个模块中,首先使用活动轮廓模型分割裂区域,然后在裂区域上应用基于规则的方法,分割斜裂。该算法已经在从 Lung Image Database Consortium(LIDC)收集的 50 张图像和从早期肺癌行动计划(ELCAP)获得的 30 张图像上进行了测试。